These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recent advances in renal tubular biochemistry. Stoff JS; Epstein FH; Narins R; Relman AS Annu Rev Physiol; 1976; 38():46-68. PubMed ID: 130828 [No Abstract] [Full Text] [Related]
3. Na K ATPase in the rat nephron related to sodium transport; results with quantitative histochemistry. Part II. Schmidt U; Dubach UC Curr Probl Clin Biochem; 1971; 3():320-44. PubMed ID: 4280963 [No Abstract] [Full Text] [Related]
4. Interactions between gluconeogenesis and sodium transport in rabbit proximal tubule. Gullans SR; Brazy PC; Dennis VW; Mandel LJ Am J Physiol; 1984 Jun; 246(6 Pt 2):F859-69. PubMed ID: 6331176 [TBL] [Abstract][Full Text] [Related]
5. Active transport of sodium and potassium ions by the sodium and potassium ion-activated adenosine triphosphatase from renal medulla. Reconstitution of the purified enzyme into a well defined in vitro transport system. Goldin SM J Biol Chem; 1977 Aug; 252(16):5630-42. PubMed ID: 142088 [No Abstract] [Full Text] [Related]
6. Distribution and function of classes of ATPases along the nephron. Katz AI Kidney Int; 1986 Jan; 29(1):21-31. PubMed ID: 2870215 [No Abstract] [Full Text] [Related]
7. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Turner RJ; Moran A Am J Physiol; 1982 Apr; 242(4):F406-14. PubMed ID: 6278960 [TBL] [Abstract][Full Text] [Related]
8. [Contribution of the kidney to glucose homeostasis]. Segura J; Ruilope LM Med Clin (Barc); 2013 Sep; 141 Suppl 2():26-30. PubMed ID: 24444521 [TBL] [Abstract][Full Text] [Related]
9. Could cytoplasmic concentration gradients for sodium and ATP exist in intact renal cells? Ammann H; Noël J; Tejedor A; Boulanger Y; Gougoux A; Vinay P Can J Physiol Pharmacol; 1995 Apr; 73(4):421-35. PubMed ID: 7671185 [TBL] [Abstract][Full Text] [Related]
10. Kidney. Morel F; de Rouffignac C Annu Rev Physiol; 1973; 35():17-54. PubMed ID: 4267675 [No Abstract] [Full Text] [Related]
11. The relationship between renal metabolism and proximal tubule transport during ontogeny. Barac-Nieto M; Spitzer A Pediatr Nephrol; 1988 Jul; 2(3):356-67. PubMed ID: 3153041 [TBL] [Abstract][Full Text] [Related]
12. [Renal sodium transport system--survey of the recent literature]. Tashima Y Nihon Rinsho; 1979; 37(2):239-45. PubMed ID: 220438 [No Abstract] [Full Text] [Related]
13. Renal sodium- and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat. Katz AI; Lindheimer MD J Clin Invest; 1973 Apr; 52(4):796-804. PubMed ID: 4348343 [TBL] [Abstract][Full Text] [Related]
14. Relationship of renal substrate utilization and patterns of renal excretion. Stecker JF; Panko WB; Gillenwater JY Invest Urol; 1973 Nov; 11(3):221-4. PubMed ID: 4749423 [No Abstract] [Full Text] [Related]
15. Sodium and bicarbonate reabsorption in microperfused proximal tubules from the denervated rat kidney: relationship to cortical Na-K-ATPase activity. LaPointe MS; Jacobs WR; Chan YL Chin J Physiol; 1990; 33(3):213-30. PubMed ID: 2176583 [TBL] [Abstract][Full Text] [Related]
16. Renal proton ATPase activity. Sabatini S; Kurtzman NA Trans Assoc Am Physicians; 1987; 100():263-7. PubMed ID: 2901155 [No Abstract] [Full Text] [Related]
17. Direct and utilization of metabolic energy for transport processes within proximal convolution. Ullrich KJ Curr Probl Clin Biochem; 1975; 4():13-20. PubMed ID: 127689 [No Abstract] [Full Text] [Related]
18. Structural aspects of adaptive changes in renal electrolyte excretion. Kaissling B Am J Physiol; 1982 Sep; 243(3):F211-26. PubMed ID: 6287865 [No Abstract] [Full Text] [Related]
19. A reconstituted Na+ + K+ pump in liposomes containing purified (Na+ + K+)-ATPase from kidney medulla. Anner BM; Lane LK; Schwartz A; Pitts BJ Biochim Biophys Acta; 1977 Jun; 467(3):340-5. PubMed ID: 141941 [TBL] [Abstract][Full Text] [Related]