BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22131809)

  • 1. Creep behavior of passive bovine extraocular muscle.
    Yoo L; Kim H; Shin A; Gupta V; Demer JL
    J Biomed Biotechnol; 2011; 2011():526705. PubMed ID: 22131809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasilinear viscoelastic behavior of bovine extraocular muscle tissue.
    Yoo L; Kim H; Gupta V; Demer JL
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3721-8. PubMed ID: 19357357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic characterization of extraocular Z-myotomy.
    Shin A; Yoo L; Demer JL
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):243-51. PubMed ID: 25477318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent passive mechanical behavior of bovine extraocular muscle compartments.
    Shin A; Yoo L; Chaudhuri Z; Demer JL
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8414-23. PubMed ID: 23188730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nonlinearity of passive extraocular muscles.
    Quaia C; Ying HS; Optican LM
    Ann N Y Acad Sci; 2011 Sep; 1233(1):17-25. PubMed ID: 21950971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory.
    Quaia C; Ying HS; Optican LM
    PLoS One; 2009 Aug; 4(8):e6480. PubMed ID: 19649257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent active contraction of extraocular muscle compartments.
    Shin A; Yoo L; Demer JL
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):199-206. PubMed ID: 25503460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation and creep quasilinear viscoelastic models for normal articular cartilage.
    Simon BR; Coats RS; Woo SL
    J Biomech Eng; 1984 May; 106(2):159-64. PubMed ID: 6738021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.
    Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):167-75. PubMed ID: 10656978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical interferometry imaging for creep modeling of the cornea.
    Yoo L; Reed J; Gimzewski JK; Demer JL
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8420-4. PubMed ID: 21969299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physically-based modeling and simulation of extraocular muscles.
    Wei Q; Sueda S; Pai DK
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):273-83. PubMed ID: 20868704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical and viscoelastic properties of skin, SMAS, and composite flaps as they pertain to rhytidectomy.
    Saulis AS; Lautenschlager EP; Mustoe TA
    Plast Reconstr Surg; 2002 Aug; 110(2):590-8; discussion 599-600. PubMed ID: 12142682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment viscoelasticity of the tendon.
    Raz E; Lanir Y
    J Biomech Eng; 2009 Nov; 131(11):111008. PubMed ID: 20353259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite Element Model of Ocular Adduction by Active Extraocular Muscle Contraction.
    Jafari S; Lu Y; Park J; Demer JL
    Invest Ophthalmol Vis Sci; 2021 Jan; 62(1):1. PubMed ID: 33393967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static load repetition is a risk factor in the development of lumbar cumulative musculoskeletal disorder.
    Sbriccoli P; Yousuf K; Kupershtein I; Solomonow M; Zhou BH; Zhu MP; Lu Y
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2643-53. PubMed ID: 15564913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The passive properties of muscle fibers are velocity dependent.
    Rehorn MR; Schroer AK; Blemker SS
    J Biomech; 2014 Feb; 47(3):687-93. PubMed ID: 24360198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to make rapid eye movements "rapid": the role of growth factors for muscle contractile properties.
    Li T; Feng CY; von Bartheld CS
    Pflugers Arch; 2011 Mar; 461(3):373-86. PubMed ID: 21279379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time dependent properties of bovine meniscal attachments: stress relaxation and creep.
    Maes JA; Haut Donahue TL
    J Biomech; 2006; 39(16):3055-61. PubMed ID: 16360161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.