BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2213238)

  • 1. A stopped-flow/rapid-freezing machine with millisecond time resolution to prepare intermediates in biochemical reactions for electron microscopy.
    Pollard TD; Maupin P; Sinard J; Huxley HE
    J Electron Microsc Tech; 1990 Oct; 16(2):160-6. PubMed ID: 2213238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-fracture electron microscopy.
    Severs NJ
    Nat Protoc; 2007; 2(3):547-76. PubMed ID: 17406618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and operation of a simple environmental chamber for rapid freezing fixation.
    Bailey SM; Chiruvolu S; Longo ML; Zasadzinski JA
    J Electron Microsc Tech; 1991 Sep; 19(1):118-26. PubMed ID: 1960567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple freeze-fracturing and etching apparatus using the cold block principle.
    Röhlich P
    Acta Biol Acad Sci Hung; 1980; 31(1-3):257-71. PubMed ID: 7223239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule structure studied by quick freezing: cryo-electron microscopy and freeze fracture.
    Mandelkow EM; Rapp R; Mandelkow E
    J Microsc; 1986 Mar; 141(Pt 3):361-73. PubMed ID: 3517351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer-controlled spraying-freezing apparatus for millisecond time-resolution electron cryomicroscopy.
    White HD; Walker ML; Trinick J
    J Struct Biol; 1998; 121(3):306-13. PubMed ID: 9704502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-fracture studies of human blood platelets activated by thrombin using rapid freezing.
    Hols H; Sixma JJ; Leunissen-Bijvelt J; Verkley A
    Thromb Haemost; 1985 Oct; 54(3):574-8. PubMed ID: 4089793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ liquid propane jet-freezing and freeze-etching of monolayer cell cultures.
    Espevik T; Elgsaeter A
    J Microsc; 1981 Jul; 123(Pt 1):105-10. PubMed ID: 7196456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-rapid freezing of thin biological samples.
    Costello MJ
    Scan Electron Microsc; 1980; (Pt 2):361-70. PubMed ID: 7423123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple pneumatic device for plunge-freezing cells grown on electron microscopy grids.
    Cole R; Matuszek G; See C; Rieder CL
    J Electron Microsc Tech; 1990 Oct; 16(2):167-73. PubMed ID: 2213239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of chemical and freezing fixation methods in the freeze-fracture of stratum corneum.
    López O; López-Iglesias C; Cócera M; Walther P; Parra JL; De La Maza A
    J Struct Biol; 2004 Jun; 146(3):302-9. PubMed ID: 15099572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of the contractile apparatus in ultrarapidly frozen smooth muscle: freeze-fracture, deep-etch, and freeze-substitution studies.
    Hodgkinson JL; Newman TM; Marston SB; Severs NJ
    J Struct Biol; 1995; 114(2):93-104. PubMed ID: 7612400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved freeze-fracturing procedure preventing contamination artifacts at fracturing temperatures below 163 K (-110 degrees C) in an unmodified Balzers unit.
    Müller W; Pscheid P
    Mikroskopie; 1982 Jun; 39(5-6):143-8. PubMed ID: 7121852
    [No Abstract]   [Full Text] [Related]  

  • 14. A comparative fine structure study of rat cerebral cortex following ultra-rapid freezing and conventional chemical fixation procedures.
    Reger JF; Escaig F
    J Submicrosc Cytol Pathol; 1988 Oct; 20(4):691-700. PubMed ID: 3147130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quick-freeze, deep-etch replication of cells in monolayers.
    Pumplin DW; Luther PW; Samuelsson SJ; Ursitti JA; Strong J
    J Electron Microsc Tech; 1990 Apr; 14(4):342-7. PubMed ID: 2332810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the quick-freeze, deep-etch, rotary-replication technique of sample preparation for 3-D electron microscopy.
    Heuser JE
    Prog Clin Biol Res; 1989; 295():71-83. PubMed ID: 2501796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The quick-freezing of single intact skeletal muscle fibers at known time intervals following electrical stimulation.
    Nassar R; Wallace NR; Taylor I; Sommer JR
    Scan Electron Microsc; 1986; (Pt 1):309-28. PubMed ID: 3488583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moving EM: the Rapid Transfer System as a new tool for correlative light and electron microscopy and high throughput for high-pressure freezing.
    Verkade P
    J Microsc; 2008 May; 230(Pt 2):317-28. PubMed ID: 18445162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins and evolution of freeze-etch electron microscopy.
    Heuser JE
    J Electron Microsc (Tokyo); 2011; 60 Suppl 1(Suppl 1):S3-29. PubMed ID: 21844598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-pressure freezing is a powerful tool for visualization of Schizosaccharomyces pombe cells: ultra-low temperature and low-voltage scanning electron microscopy and immunoelectron microscopy.
    Osumi M; Konomi M; Sugawara T; Takagi T; Baba M
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):75-88. PubMed ID: 16782736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.