These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
534 related articles for article (PubMed ID: 22132998)
1. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Kaur K; Forrest JA Langmuir; 2012 Feb; 28(5):2736-44. PubMed ID: 22132998 [TBL] [Abstract][Full Text] [Related]
2. Detection in near-field domain of biomolecules adsorbed on a single metallic nanoparticle. Barbillon G; Bijeon JL; Bouillard JS; Plain J; Lamy De la Chapelle M; Adam PM; Royer P J Microsc; 2008 Feb; 229(Pt 2):270-4. PubMed ID: 18304084 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Marinakos SM; Chen S; Chilkoti A Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106 [TBL] [Abstract][Full Text] [Related]
4. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label. Kajiura M; Nakanishi T; Iida H; Takada H; Osaka T J Colloid Interface Sci; 2009 Jul; 335(1):140-5. PubMed ID: 19395015 [TBL] [Abstract][Full Text] [Related]
5. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Jans H; Liu X; Austin L; Maes G; Huo Q Anal Chem; 2009 Nov; 81(22):9425-32. PubMed ID: 19803497 [TBL] [Abstract][Full Text] [Related]
7. Modulating colloidal adsorption on a two-dimensional protein crystal. Shindel MM; Mohraz A; Mumm DR; Wang SW Langmuir; 2009 Jan; 25(2):1038-46. PubMed ID: 19099535 [TBL] [Abstract][Full Text] [Related]
8. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. Li X; Tamada K; Baba A; Knoll W; Hara M J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722 [TBL] [Abstract][Full Text] [Related]
13. Nanoscopic observation of a gold nanoparticle-conjugated protein using near-field scanning optical microscopy. Park HK; Lim YT; Kim JK; Park HG; Chung BH Ultramicroscopy; 2008 Sep; 108(10):1115-9. PubMed ID: 18550288 [TBL] [Abstract][Full Text] [Related]
14. High sensitivity and selectivity of human antibody attachment at the interstices between substrate-bound gold nanoparticles. Hsu CY; Huang JW; Lin KJ Chem Commun (Camb); 2011 Jan; 47(3):872-4. PubMed ID: 21103465 [TBL] [Abstract][Full Text] [Related]
15. Determination of size and concentration of gold nanoparticles from extinction spectra. Khlebtsov NG Anal Chem; 2008 Sep; 80(17):6620-5. PubMed ID: 18642876 [TBL] [Abstract][Full Text] [Related]
16. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Nath N; Chilkoti A Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894 [TBL] [Abstract][Full Text] [Related]
17. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
18. Label-free biosensing based on single gold nanostars as plasmonic transducers. Dondapati SK; Sau TK; Hrelescu C; Klar TA; Stefani FD; Feldmann J ACS Nano; 2010 Nov; 4(11):6318-22. PubMed ID: 20942444 [TBL] [Abstract][Full Text] [Related]
19. Surface characterization of immunosensor conjugated with gold nanoparticles based on cyclic voltammetry and X-ray photoelectron spectroscopy. Lai LJ; Yang YW; Lin YK; Huang LL; Hsieh YH Colloids Surf B Biointerfaces; 2009 Feb; 68(2):130-5. PubMed ID: 19019639 [TBL] [Abstract][Full Text] [Related]
20. Interaction of gold nanoparticles with common human blood proteins. Lacerda SH; Park JJ; Meuse C; Pristinski D; Becker ML; Karim A; Douglas JF ACS Nano; 2010 Jan; 4(1):365-79. PubMed ID: 20020753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]