These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22133202)
1. Demineralized bone particle impregnated poly(l-lactide-co-glycolide) scaffold for application in tissue-engineered intervertebral discs. Kim SH; Song JE; Lee D; Khang G J Biomater Sci Polym Ed; 2012; 23(17):2153-70. PubMed ID: 22133202 [TBL] [Abstract][Full Text] [Related]
2. Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells. Han KS; Song JE; Kang SJ; Lee D; Khang G J Biomater Sci Polym Ed; 2015; 26(2):92-110. PubMed ID: 25431827 [TBL] [Abstract][Full Text] [Related]
3. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862 [TBL] [Abstract][Full Text] [Related]
4. A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering. Kawazoe N; Inoue C; Tateishi T; Chen G Biotechnol Prog; 2010; 26(3):819-26. PubMed ID: 20039440 [TBL] [Abstract][Full Text] [Related]
5. Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration. Kim SH; Song JE; Lee D; Khang G J Tissue Eng Regen Med; 2014 Apr; 8(4):279-90. PubMed ID: 22689349 [TBL] [Abstract][Full Text] [Related]
6. The potential of DBP gels containing intervertebral disc cells for annulus fibrosus supplementation: in vivo. Song JE; Kim EY; Ahn WY; Lee YJ; Lee D; Reis R; Khang G J Tissue Eng Regen Med; 2015 Nov; 9(11):E98-107. PubMed ID: 23460254 [TBL] [Abstract][Full Text] [Related]
7. Experimental intervertebral disc regeneration with tissue-engineered composite in a canine model. Ruan DK; Xin H; Zhang C; Wang C; Xu C; Li C; He Q Tissue Eng Part A; 2010 Jul; 16(7):2381-9. PubMed ID: 20214451 [TBL] [Abstract][Full Text] [Related]
8. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
9. Ectopic bone formation by gel-derived bioactive glass-poly-L-lactide-co-glycolide composites in a rabbit muscle model. Filipowska J; Cholewa-Kowalska K; Wieczorek J; Semik D; Dąbrowski Z; Łączka M; Osyczka AM Biomed Mater; 2017 Jan; 12(1):015015. PubMed ID: 28094240 [TBL] [Abstract][Full Text] [Related]
10. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
11. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703 [TBL] [Abstract][Full Text] [Related]
12. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. Kim HY; Kim HN; Lee SJ; Song JE; Kwon SY; Chung JW; Lee D; Khang G J Tissue Eng Regen Med; 2017 Jan; 11(1):44-57. PubMed ID: 24619952 [TBL] [Abstract][Full Text] [Related]
13. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering. Choy AT; Chan BP PLoS One; 2015; 10(6):e0131827. PubMed ID: 26115332 [TBL] [Abstract][Full Text] [Related]
14. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair. Guillaume O; Naqvi SM; Lennon K; Buckley CT J Biomater Appl; 2015 Apr; 29(9):1230-46. PubMed ID: 25376622 [TBL] [Abstract][Full Text] [Related]
15. Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles. Yoon SJ; Kim SH; Ha HJ; Ko YK; So JW; Kim MS; Yang YI; Khang G; Rhee JM; Lee HB Tissue Eng Part A; 2008 Apr; 14(4):539-47. PubMed ID: 18352826 [TBL] [Abstract][Full Text] [Related]
16. [Fabrication and analysis of a novel tissue engineered composite biphasic scaffold for annulus fibrosus and nucleus pulposus]. Xu H; Xu B; Yang Q; Li X; Ma X; Xia Q; Zhang C; Wu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Apr; 27(4):475-80. PubMed ID: 23757878 [TBL] [Abstract][Full Text] [Related]
17. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells. Tavassol F; Schumann P; Lindhorst D; Sinikovic B; Voss A; von See C; Kampmann A; Bormann KH; Carvalho C; Mülhaupt R; Harder Y; Laschke MW; Menger MD; Gellrich NC; Rücker M Tissue Eng Part A; 2010 Jul; 16(7):2265-79. PubMed ID: 20184434 [TBL] [Abstract][Full Text] [Related]
18. Intervertebral Disc Tissue Engineering with Natural Extracellular Matrix-Derived Biphasic Composite Scaffolds. Xu B; Xu H; Wu Y; Li X; Zhang Y; Ma X; Yang Q PLoS One; 2015; 10(4):e0124774. PubMed ID: 25894203 [TBL] [Abstract][Full Text] [Related]
19. Iu J; Massicotte E; Li SQ; Hurtig MB; Toyserkani E; Santerre JP; Kandel RA Tissue Eng Part A; 2017 Sep; 23(17-18):1001-1010. PubMed ID: 28486045 [TBL] [Abstract][Full Text] [Related]
20. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Huang B; Zhuang Y; Li CQ; Liu LT; Zhou Y Spine (Phila Pa 1976); 2011 Dec; 36(26):2252-9. PubMed ID: 21358466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]