These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 22133314)

  • 1. Dynamic disorder in single-enzyme experiments: facts and artifacts.
    Terentyeva TG; Engelkamp H; Rowan AE; Komatsuzaki T; Hofkens J; Li CB; Blank K
    ACS Nano; 2012 Jan; 6(1):346-54. PubMed ID: 22133314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model of fluorescence intermittency in single enzymes.
    Chaudhury S; Kou SC; Cherayil BJ
    J Phys Chem B; 2007 Mar; 111(9):2377-84. PubMed ID: 17288472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide.
    Zhao J; Branagan SP; Bohn PW
    Appl Spectrosc; 2012 Feb; 66(2):163-9. PubMed ID: 22449279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments.
    Fixler D; Namer Y; Yishay Y; Deutsch M
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1141-52. PubMed ID: 16761841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of single-molecule spectroscopy in studying enzyme kinetics and mechanism.
    Shi J; Dertouzos J; Gafni A; Steel D
    Methods Enzymol; 2008; 450():129-57. PubMed ID: 19152859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-based analysis of enzymes at the single-molecule level.
    Blank K; De Cremer G; Hofkens J
    Biotechnol J; 2009 Apr; 4(4):465-79. PubMed ID: 19229885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeing the forest for the trees: fluorescence studies of single enzymes in the context of ensemble experiments.
    Tan YW; Yang H
    Phys Chem Chem Phys; 2011 Feb; 13(5):1709-21. PubMed ID: 21183988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states.
    Kalinin S; Valeri A; Antonik M; Felekyan S; Seidel CA
    J Phys Chem B; 2010 Jun; 114(23):7983-95. PubMed ID: 20486698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of probe volume in fluorescence correlation spectroscopy.
    Gao Y; Zhong Z; Geng LM
    Appl Spectrosc; 2007 Sep; 61(9):956-62. PubMed ID: 17910792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient measurements using thermographic phosphors.
    Walker DG; Allison SW
    ISA Trans; 2007 Feb; 46(1):15-20. PubMed ID: 17240375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
    Masso M; Vaisman II
    Bioinformatics; 2007 Dec; 23(23):3155-61. PubMed ID: 17977887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoaperture-enhanced signal-to-noise ratio in fluorescence correlation spectroscopy.
    Wenger J; Gérard D; Aouani H; Rigneault H
    Anal Chem; 2009 Jan; 81(2):834-9. PubMed ID: 19099408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian detection of intensity changes in single molecule and molecular dynamics trajectories.
    Ensign DL; Pande VS
    J Phys Chem B; 2010 Jan; 114(1):280-92. PubMed ID: 20000829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new concept for ultrasensitive fluorescence measurements of molecules in solution and membrane: 1. Theory and a first application.
    Földes-Papp Z; Demel U; Tilz GP
    J Immunol Methods; 2004 Mar; 286(1-2):1-11. PubMed ID: 15087217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures.
    Su WW; Liu B; Lu WB; Xu NS; Du GC; Tan JL
    Biotechnol Bioeng; 2005 Jul; 91(2):213-26. PubMed ID: 15915511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing multiple molecular States in single-molecule multiparameter fluorescence detection by probability distribution analysis.
    Kalinin S; Felekyan S; Valeri A; Seidel CA
    J Phys Chem B; 2008 Jul; 112(28):8361-74. PubMed ID: 18570393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluctuating enzymes: lessons from single-molecule studies.
    Min W; English BP; Luo G; Cherayil BJ; Kou SC; Xie XS
    Acc Chem Res; 2005 Dec; 38(12):923-31. PubMed ID: 16359164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements.
    Tosi A; Dalla Mora A; Zappa F; Gulinatti A; Contini D; Pifferi A; Spinelli L; Torricelli A; Cubeddu R
    Opt Express; 2011 May; 19(11):10735-46. PubMed ID: 21643330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.