These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22133518)

  • 1. Inducing novel electronic properties in <112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study.
    Zhang C; De Sarkar A; Zhang RQ
    J Phys Condens Matter; 2012 Jan; 24(1):015301. PubMed ID: 22133518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain.
    Peng X; Tang F; Logan P
    J Phys Condens Matter; 2011 Mar; 23(11):115502. PubMed ID: 21358032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires.
    Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L
    J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the electronic properties of germanium nanowires via applied strain and surface passivation.
    Sk MA; Ng MF; Huang L; Lim KH
    Phys Chem Chem Phys; 2013 Apr; 15(16):5927-35. PubMed ID: 23493789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and electronic properties of diamond nanowires under tensile strain from first principles.
    Jiang X; Zhao J; Jiang X
    Nanotechnology; 2011 Oct; 22(40):405705. PubMed ID: 21911933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water induced electrical hysteresis in germanium nanowires: a theoretical study.
    Sk MA; Ng MF; Yang SW; Lim KH
    Phys Chem Chem Phys; 2011 Jun; 13(24):11663-70. PubMed ID: 21597612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress induced half-metallicity in surface defected germanium nanowires.
    Sk MA; Ng MF; Yang SW; Lim KH
    Phys Chem Chem Phys; 2012 Jan; 14(3):1166-74. PubMed ID: 22127329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires.
    Zhang H; Li Y; Tang Q; Liu L; Zhou Z
    Nanoscale; 2012 Feb; 4(4):1078-84. PubMed ID: 21881662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and electronic properties of ZnO/GaN heterostructured nanowires from first-principles study.
    Zhang Y; Fang DQ; Zhang SL; Huang R; Wen YH
    Phys Chem Chem Phys; 2016 Jan; 18(4):3097-102. PubMed ID: 26741266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires.
    Fukata N; Sato K; Mitome M; Bando Y; Sekiguchi T; Kirkham M; Hong JI; Wang ZL; Snyder RL
    ACS Nano; 2010 Jul; 4(7):3807-16. PubMed ID: 20565120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry and electrical properties of germanium nanowires.
    Wang D; Chang YL; Wang Q; Cao J; Farmer DB; Gordon RG; Dai H
    J Am Chem Soc; 2004 Sep; 126(37):11602-11. PubMed ID: 15366907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire.
    Chang H; In E; Kong KJ; Lee JO; Choi Y; Ryu BH
    J Phys Chem B; 2005 Jan; 109(1):30-2. PubMed ID: 16850978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium effects on the mechanical and electronic properties of germanium nanowires.
    González-Macías A; Salazar F; Miranda A; Trejo-Baños A; Pérez LA; Carvajal E; Cruz-Irisson M
    Nanotechnology; 2018 Apr; 29(15):154004. PubMed ID: 29372891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts.
    Sierra-Sastre Y; Dayeh SA; Picraux ST; Batt CA
    ACS Nano; 2010 Feb; 4(2):1209-17. PubMed ID: 20128609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Novel of
    Huang J; Xing H; Huang Y; Wang C; Chen X
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5847-5853. PubMed ID: 30961748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells.
    Pizzi G; Virgilio M; Grosso G
    Nanotechnology; 2010 Feb; 21(5):055202. PubMed ID: 20023310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polygermanes: bandgap engineering via tensile strain and side-chain substitution.
    Fa W; Zeng XC
    Chem Commun (Camb); 2014 Aug; 50(65):9126-9. PubMed ID: 24990582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.