These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22133560)

  • 1. Temperature-pressure-induced solid-solid <100> to <110> reorientation in FCC metallic nanowire: a molecular dynamic study.
    Sutrakar VK; Roy Mahapatra D; Pillai AC
    J Phys Condens Matter; 2012 Jan; 24(1):015401. PubMed ID: 22133560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni-Al nanowires.
    Sutrakar VK; Mahapatra DR
    Nanotechnology; 2009 Jul; 20(29):295705. PubMed ID: 19567964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled effect of size, strain rate, and temperature on the shape memory of a pentagonal Cu nanowire.
    Sutrakar VK; Mahapatra DR
    Nanotechnology; 2009 Jan; 20(4):045701. PubMed ID: 19417327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires.
    Koh SJ; Lee HP
    Nanotechnology; 2006 Jul; 17(14):3451-67. PubMed ID: 19661590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape memory and pseudoelasticity in metal nanowires.
    Park HS; Gall K; Zimmerman JA
    Phys Rev Lett; 2005 Dec; 95(25):255504. PubMed ID: 16384469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic modeling of strain-controlled cyclic loading in TiAl crystalline nanowire.
    Sutrakar VK
    J Phys Condens Matter; 2014 Jul; 26(26):265003. PubMed ID: 24871889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape memory effect in Cu nanowires.
    Liang W; Zhou M; Ke F
    Nano Lett; 2005 Oct; 5(10):2039-43. PubMed ID: 16218734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-stress-induced phase transformation in metal nanowires.
    Diao J; Gall K; Dunn ML
    Nat Mater; 2003 Oct; 2(10):656-60. PubMed ID: 12958594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of PbS nanowire pine trees driven by screw dislocations.
    Lau YK; Chernak DJ; Bierman MJ; Jin S
    J Am Chem Soc; 2009 Nov; 131(45):16461-71. PubMed ID: 19845339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of a close-packed Au nanoparticle/polymer monolayer into a large area array of oriented Au nanowires via E-beam promoted uniaxial deformation and room temperature sintering.
    Xiong S; Molecke R; Bosch M; Schunk PR; Brinker CJ
    J Am Chem Soc; 2011 Aug; 133(30):11410-3. PubMed ID: 21711045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons.
    Yoon J; Hong WK; Jo M; Jo G; Choe M; Park W; Sohn JI; Nedic S; Hwang H; Welland ME; Lee T
    ACS Nano; 2011 Jan; 5(1):558-64. PubMed ID: 21155534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers.
    Lee HW; Schmidt MA; Russell RF; Joly NY; Tyagi HK; Uebel P; Russell PS
    Opt Express; 2011 Jun; 19(13):12180-9. PubMed ID: 21716455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis of the breaking processes of Ni nanowires.
    García-Mochales P; Paredes R; Peláez S; Serena PA
    Nanotechnology; 2008 Jun; 19(22):225704. PubMed ID: 21825771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.
    Hofmann S; Sharma R; Wirth CT; Cervantes-Sodi F; Ducati C; Kasama T; Dunin-Borkowski RE; Drucker J; Bennett P; Robertson J
    Nat Mater; 2008 May; 7(5):372-5. PubMed ID: 18327262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions.
    Maurer F; Brötz J; Karim S; Toimil Molares ME; Trautmann C; Fuess H
    Nanotechnology; 2007 Apr; 18(13):135709. PubMed ID: 21730394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-nanowire raman microprobe studies of doping-, temperature-, and voltage-induced metal-insulator transitions of W(x)V(1-x)O2 nanowires.
    Whittaker L; Wu TL; Stabile A; Sambandamurthy G; Banerjee S
    ACS Nano; 2011 Nov; 5(11):8861-7. PubMed ID: 21988709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled effects of size and uniaxial force on phase transitions in copper nanowires.
    Zhu J; Shi D; Zhao J; Wang B
    Nanotechnology; 2010 May; 21(18):185703. PubMed ID: 20378947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers.
    Cantrell RA; James C; Clancy P
    Langmuir; 2011 Aug; 27(16):9944-54. PubMed ID: 21732668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires.
    Yin S; Cheng G; Richter G; Gao H; Zhu Y
    ACS Nano; 2019 Aug; 13(8):9082-9090. PubMed ID: 31305984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.