These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22133607)

  • 1. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60 °C.
    Carver SM; Nelson MC; Lepistö R; Yu Z; Tuovinen OH
    Bioresour Technol; 2012 Jan; 104():424-31. PubMed ID: 22133607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp.
    He Q; Hemme CL; Jiang H; He Z; Zhou J
    Bioresour Technol; 2011 Oct; 102(20):9586-92. PubMed ID: 21868218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.
    Ren Z; Ward TE; Logan BE; Regan JM
    J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production.
    Carver SM; Hulatt CJ; Thomas DN; Tuovinen OH
    Biodegradation; 2011 Jul; 22(4):805-14. PubMed ID: 20878208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.
    Lo YC; Huang CY; Cheng CL; Lin CY; Chang JS
    Bioresour Technol; 2011 Sep; 102(18):8384-92. PubMed ID: 21489783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cellulose degradation and ethanol production of different Clostridium strain].
    Fang ZG; Ouyang ZY
    Huan Jing Ke Xue; 2010 Aug; 31(8):1926-31. PubMed ID: 21090315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Enhanced role of the co-culture of thermophilic anaerobic bacteria on cellulosic ethanol].
    Fang ZG
    Huan Jing Ke Xue; 2010 Apr; 31(4):1059-65. PubMed ID: 20527192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates.
    Chinn MS; Nokes SE; Strobel HJ
    Biotechnol Prog; 2006; 22(1):53-9. PubMed ID: 16454492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.
    Magnusson L; Cicek N; Sparling R; Levin D
    Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium.
    Geng A; He Y; Qian C; Yan X; Zhou Z
    Bioresour Technol; 2010 Jun; 101(11):4029-33. PubMed ID: 20144864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures.
    Nissilä ME; Tähti HP; Rintala JA; Puhakka JA
    Bioresour Technol; 2011 Mar; 102(6):4501-6. PubMed ID: 21251819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification].
    Du R; Li S; Zhang X; Wang L
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11.
    Zhang JN; Li YH; Zheng HQ; Fan YT; Hou HW
    Bioresour Technol; 2015 Sep; 192():60-7. PubMed ID: 26011692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile and robust aerotolerant microbial community capable of cellulosic ethanol production.
    Ronan P; Yeung CW; Schellenberg J; Sparling R; Wolfaardt GM; Hausner M
    Bioresour Technol; 2013 Feb; 129():156-63. PubMed ID: 23238345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caproate formation in mixed-culture fermentative hydrogen production.
    Ding HB; Tan GY; Wang JY
    Bioresour Technol; 2010 Dec; 101(24):9550-9. PubMed ID: 20696576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus.
    He Q; Lokken PM; Chen S; Zhou J
    Bioresour Technol; 2009 Dec; 100(23):5955-65. PubMed ID: 19608413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor.
    Talabardon M; Schwitzguébel JP; Péringer P; Yang ST
    Biotechnol Prog; 2000; 16(6):1008-17. PubMed ID: 11101328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature and temperature shock on the stability of continuous cellulosic-hydrogen fermentation.
    Gadow SI; Jiang H; Watanabe R; Li YY
    Bioresour Technol; 2013 Aug; 142():304-11. PubMed ID: 23747441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.