These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22133736)

  • 41. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm.
    Xie Z; Ma H; He X; Qi B; Ren G; Dong L; Tan Y
    Opt Express; 2018 Apr; 26(8):9541-9551. PubMed ID: 29715903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Queste S; Nongaillard B; Huang YP
    Ultrasonics; 2012 Feb; 52(2):223-9. PubMed ID: 21907378
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of sparse synthetic transmit aperture imaging with coded excitation and frequency division.
    Behar V; Adam D
    Ultrasonics; 2005 Dec; 43(10):777-88. PubMed ID: 16087207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Minimum radiation force target size for power measurements in focused ultrasonic fields with circular symmetry.
    Beissner K
    J Acoust Soc Am; 2010 Dec; 128(6):3355-62. PubMed ID: 21218869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response.
    Lingvall F; Olofsson T; Stepinski T
    J Acoust Soc Am; 2003 Jul; 114(1):225-34. PubMed ID: 12880037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrasound characteristics of focused axisymmetrically curved surface transducers.
    Wang HZ; He Y; Yang YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):63-72. PubMed ID: 18284951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A finite-element model of the aperture method for determining the effective radiating area of physiotherapy treatment heads.
    GĂ©lat PN; Zeqiri B; Hodnett M
    Ultrasonics; 2005 Mar; 43(5):321-30. PubMed ID: 15737382
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery.
    Lu M; Wan M; Xu F; Wang X; Chang X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e325-30. PubMed ID: 16949119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new synthetic aperture focusing method to suppress the diffraction of ultrasound.
    Chang J; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):327-37. PubMed ID: 21342818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Segmented mirror phasing using the focal-plane intensity.
    Dente GC; Tilton ML
    Appl Opt; 2012 Jan; 51(3):295-301. PubMed ID: 22270655
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Verification of the Westervelt equation for focused transducers.
    Jing Y; Shen D; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1097-101. PubMed ID: 21622065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [High-intensity focused ultrasound transducer].
    Fu L; Li F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):667-70. PubMed ID: 19634694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasonic field modeling by distributed point source method for different transducer boundary conditions.
    Yanagita T; Kundu T; Placko D
    J Acoust Soc Am; 2009 Nov; 126(5):2331-9. PubMed ID: 19894816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diffraction effects in hydrophone measurements.
    Goldstein A; Gandhi DR; O'Brien WR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):972-9. PubMed ID: 18244251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Array tilt in the atmosphere and its effect on optical phased array performance.
    Hyde MW
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1315-1323. PubMed ID: 30110293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Piston sensing of sparse aperture systems with a single broadband image via deep learning.
    Ma X; Xie Z; Ma H; Xu Y; Ren G; Liu Y
    Opt Express; 2019 May; 27(11):16058-16070. PubMed ID: 31163792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discriminating between the nearfield and the farfield of acoustic transducers.
    Foote KG
    J Acoust Soc Am; 2014 Oct; 136(4):1511-7. PubMed ID: 25324055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Piston Error Measurement for Segmented Telescopes Based on a Hybrid Artificial Neural Network.
    Yue D; Song P; Wang C; Chuai Y
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wide-band white light sparse-aperture Fizeau imaging interferometer testbed for a distributed small-satellites constellation.
    Jiang A; Wang S; Dong Z; Xue J; Wang J; Dai Y
    Appl Opt; 2018 Apr; 57(11):2736-2746. PubMed ID: 29714274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Piston Error Measurement for Segmented Telescopes with an Artificial Neural Network.
    Yue D; He Y; Li Y
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.