BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22133839)

  • 1. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent.
    Mackie AL; Walsh ME
    Water Res; 2012 Feb; 46(2):327-34. PubMed ID: 22133839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment.
    Mackie A; Boilard S; Walsh ME; Lake CB
    J Hazard Mater; 2010 Jan; 173(1-3):283-91. PubMed ID: 19744781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water.
    Mackie AL; Walsh ME
    Water Res; 2015 Nov; 85():443-50. PubMed ID: 26372742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.
    Tolonen ET; Sarpola A; Hu T; Rämö J; Lassi U
    Chemosphere; 2014 Dec; 117():419-24. PubMed ID: 25193795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.
    Salihoglu G; Pinarli V
    J Hazard Mater; 2008 May; 153(3):1110-6. PubMed ID: 17977656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignor process for acidic rock drainage treatment.
    Zhuang JM; Walsh T
    Environ Technol; 2004 Sep; 25(9):1031-40. PubMed ID: 15515269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical and microbiological characterization of cement kiln dust for potential reuse in wastewater treatment.
    Salem WM; Sayed WF; Halawy SA; Elamary RB
    Ecotoxicol Environ Saf; 2015 Sep; 119():155-61. PubMed ID: 26004355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.
    Gitari WM; Petrik LF; Key DL; Okujeni C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(2):117-37. PubMed ID: 21170774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate.
    Lee M; Paik IS; Kim I; Kang H; Lee S
    J Hazard Mater; 2007 Jun; 144(1-2):208-14. PubMed ID: 17101213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process water treatment at the Ranger uranium mine, Northern Australia.
    Topp H; Russell H; Davidson J; Jones D; Levy V; Gilderdale M; Davis S; Ring R; Conway G; Macintosh P; Sertorio L
    Water Sci Technol; 2003; 47(10):155-62. PubMed ID: 12862230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of manganese and zinc from Kahrizak landfill leachate using daily cover soil and lime.
    Safari E; Bidhendi GN
    Waste Manag; 2007; 27(11):1551-6. PubMed ID: 17125985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of sulfide oxidation in waste rock by the addition of lime kiln dust.
    Nyström E; Kaasalainen H; Alakangas L
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25945-25957. PubMed ID: 31273653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrated lime for metals immobilization and explosives transformation: Treatability study.
    Martin WA; Larson SL; Nestler CC; Fabian G; O'Connor G; Felt DR
    J Hazard Mater; 2012 May; 215-216():280-6. PubMed ID: 22445717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent.
    Mohan D; Chander S
    J Hazard Mater; 2006 Oct; 137(3):1545-53. PubMed ID: 16784810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.