These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In Vivo Molecular Characterization of Abdominal Aortic Aneurysms Using Fibrin-Specific Magnetic Resonance Imaging. Botnar RM; Brangsch J; Reimann C; Janssen CHP; Razavi R; Hamm B; Makowski MR J Am Heart Assoc; 2018 May; 7(11):. PubMed ID: 29848500 [TBL] [Abstract][Full Text] [Related]
4. Analysis of in situ and ex vivo vascular endothelial growth factor receptor expression during experimental aortic aneurysm progression. Tedesco MM; Terashima M; Blankenberg FG; Levashova Z; Spin JM; Backer MV; Backer JM; Sho M; Sho E; McConnell MV; Dalman RL Arterioscler Thromb Vasc Biol; 2009 Oct; 29(10):1452-7. PubMed ID: 19574559 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin-binding probe. Adams LC; Brangsch J; Reimann C; Kaufmann JO; Nowak K; Buchholz R; Karst U; Botnar RM; Hamm B; Makowski MR Sci Rep; 2020 Feb; 10(1):3231. PubMed ID: 32094414 [TBL] [Abstract][Full Text] [Related]
6. Bioluminescence and magnetic resonance imaging of macrophage homing to experimental abdominal aortic aneurysms. Miyama N; Dua MM; Schultz GM; Kosuge H; Terashima M; Pisani LJ; Dalman RL; McConnell MV Mol Imaging; 2012 Apr; 11(2):126-34. PubMed ID: 22469240 [TBL] [Abstract][Full Text] [Related]
7. Detection of Macrophage Localization in the Abdominal Aortic Aneurysm Wall Using Ex Vivo Superparamagnetic Iron Oxide-Enhanced Magnetic Resonance Imaging. Umetsu M; Goto H; Nakamura Y; Ota H; Shimizu T; Hashimoto M; Akamatsu D; Kamei T Ann Vasc Surg; 2020 Oct; 68():344-350. PubMed ID: 32439528 [TBL] [Abstract][Full Text] [Related]
8. TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms. Angelov SN; Hu JH; Wei H; Airhart N; Shi M; Dichek DA Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2102-2113. PubMed ID: 28729364 [TBL] [Abstract][Full Text] [Related]
9. In vivo serial assessment of aortic aneurysm formation in apolipoprotein E-deficient mice via MRI. Turner GH; Olzinski AR; Bernard RE; Aravindhan K; Karr HW; Mirabile RC; Willette RN; Gough PJ; Jucker BM Circ Cardiovasc Imaging; 2008 Nov; 1(3):220-6. PubMed ID: 19808546 [TBL] [Abstract][Full Text] [Related]
10. In vivo evaluation of a new magnetic resonance imaging contrast agent (P947) to target matrix metalloproteinases in expanding experimental abdominal aortic aneurysms. Bazeli R; Coutard M; Duport BD; Lancelot E; Corot C; Laissy JP; Letourneur D; Michel JB; Serfaty JM Invest Radiol; 2010 Oct; 45(10):662-8. PubMed ID: 20733508 [TBL] [Abstract][Full Text] [Related]
11. Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture. Brangsch J; Reimann C; Kaufmann JO; Adams LC; Onthank DC; Thöne-Reineke C; Robinson SP; Buchholz R; Karst U; Botnar RM; Hamm B; Makowski MR Circ Cardiovasc Imaging; 2019 Mar; 12(3):e008707. PubMed ID: 30871334 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a smart activatable MRI nanoprobe to target matrix metalloproteinases in the early-stages of abdominal aortic aneurysms. Yao Y; Cheng K; Cheng Z Nanomedicine; 2020 Jun; 26():102177. PubMed ID: 32142755 [TBL] [Abstract][Full Text] [Related]
13. A Modified Murine Abdominal Aortic Aneurysm Rupture Model Using Elastase Perfusion and Angiotensin II Infusion. Yue J; Yin L; Shen J; Liu Z Ann Vasc Surg; 2020 Aug; 67():474-481. PubMed ID: 32171859 [TBL] [Abstract][Full Text] [Related]
14. In vivo imaging of macrophages during the early-stages of abdominal aortic aneurysm using high resolution MRI in ApoE mice. Yao Y; Wang Y; Zhang Y; Li Y; Sheng Z; Wen S; Ma G; Liu N; Fang F; Teng GJ PLoS One; 2012; 7(3):e33523. PubMed ID: 22448249 [TBL] [Abstract][Full Text] [Related]
15. Microscopic multifrequency magnetic resonance elastography of ex vivo abdominal aortic aneurysms for extracellular matrix imaging in a mouse model. Mangarova DB; Bertalan G; Jordan J; Brangsch J; Kader A; Möckel J; Adams LC; Sack I; Taupitz M; Hamm B; Braun J; Makowski MR Acta Biomater; 2022 Mar; 140():389-397. PubMed ID: 34818577 [TBL] [Abstract][Full Text] [Related]
16. Ex vivo magnetic particle imaging of vascular inflammation in abdominal aortic aneurysm in a murine model. Mangarova DB; Brangsch J; Mohtashamdolatshahi A; Kosch O; Paysen H; Wiekhorst F; Klopfleisch R; Buchholz R; Karst U; Taupitz M; Schnorr J; Hamm B; Makowski MR Sci Rep; 2020 Jul; 10(1):12410. PubMed ID: 32709967 [TBL] [Abstract][Full Text] [Related]
17. Diameter-related variations of geometrical, mechanical, and mass fraction data in the anterior portion of abdominal aortic aneurysms. Tong J; Cohnert T; Holzapfel GA Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):262-70. PubMed ID: 25617258 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the distribution and progression of intraluminal thrombus in abdominal aortic aneurysms using high-resolution MRI. Zhu C; Leach JR; Tian B; Cao L; Wen Z; Wang Y; Liu X; Liu Q; Lu J; Saloner D; Hope MD J Magn Reson Imaging; 2019 Sep; 50(3):994-1001. PubMed ID: 30694008 [TBL] [Abstract][Full Text] [Related]
19. Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm. Wang X; Lane BA; Eberth JF; Lessner SM; Vyavahare NR Theranostics; 2019; 9(14):4156-4167. PubMed ID: 31281538 [No Abstract] [Full Text] [Related]