These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 22134028)
1. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations. Bade R; Oh S; Shin WS Sci Total Environ; 2012 Feb; 416():127-36. PubMed ID: 22134028 [TBL] [Abstract][Full Text] [Related]
2. DGT use in contaminated site characterization. The importance of heavy metal site specific behaviour. Ruello ML; Sileno M; Sani D; Fava G Chemosphere; 2008 Jan; 70(6):1135-40. PubMed ID: 17904196 [TBL] [Abstract][Full Text] [Related]
3. Predicting mercury bioavailability in soil for earthworm Eisenia fetida using the diffusive gradients in thin films technique. Huu Nguyen V; Yee SK; Hong Y; Moon DH; Han S Environ Sci Pollut Res Int; 2019 Jul; 26(19):19549-19559. PubMed ID: 31079304 [TBL] [Abstract][Full Text] [Related]
4. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Muhammad I; Puschenreiter M; Wenzel WW Sci Total Environ; 2012 Feb; 416():490-500. PubMed ID: 22177029 [TBL] [Abstract][Full Text] [Related]
5. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Bade R; Oh S; Sik Shin W Ecotoxicol Environ Saf; 2012 Jun; 80():299-307. PubMed ID: 22498424 [TBL] [Abstract][Full Text] [Related]
6. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. Lee SH; Kim EY; Hyun S; Kim JG J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradient in thin films (DGT) and ion exchange resin membranes. Agbenin JO; Welp G Environ Monit Assess; 2012 Apr; 184(4):2275-84. PubMed ID: 21590301 [TBL] [Abstract][Full Text] [Related]
8. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction. Smith BA; Greenberg B; Stephenson GL Chemosphere; 2010 Oct; 81(6):755-66. PubMed ID: 20678790 [TBL] [Abstract][Full Text] [Related]
9. Prediction of metal bioavailability in Dutch field soils for the oligochaete Enchytraeus crypticus. Peijnenburg WJ; Posthuma L; Zweers PG; Baerselman R; de Groot AC; Van Veen RP; Jager T Ecotoxicol Environ Saf; 1999 Jun; 43(2):170-86. PubMed ID: 10375420 [TBL] [Abstract][Full Text] [Related]
10. Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints. Conesa HM; Schulin R; Nowack B Environ Sci Pollut Res Int; 2010 Mar; 17(3):657-64. PubMed ID: 19816728 [TBL] [Abstract][Full Text] [Related]
11. Predictive and estimation model of Cd, Ni, and Zn bioaccumulations in maize based on diffusive gradients in thin films. Chen R; Mu X; Liu J; Cheng N; Shi R; Hu M; Chen Z; Wang H Sci Total Environ; 2023 Feb; 860():160523. PubMed ID: 36446665 [TBL] [Abstract][Full Text] [Related]
12. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. Nahmani J; Hodson ME; Devin S; Vijver MG Environ Pollut; 2009 Oct; 157(10):2622-8. PubMed ID: 19482399 [TBL] [Abstract][Full Text] [Related]
13. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
14. An improved method for determination of heavy metal bioavailability in contaminated soil. Lin SH; Lai SL; Leu HG Environ Technol; 2001 Jun; 22(6):731-9. PubMed ID: 11482394 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. Allan IJ; Knutsson J; Guigues N; Mills GA; Fouillac AM; Greenwood R J Environ Monit; 2007 Jul; 9(7):672-81. PubMed ID: 17607387 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Li L; Xu Z; Wu J; Tian G Bioresour Technol; 2010 May; 101(10):3430-6. PubMed ID: 20080399 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal concentrations in soil and earthworms in a floodplain grassland. van Vliet PC; van der Zee SE; Ma WC Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081 [TBL] [Abstract][Full Text] [Related]
18. Structural equation model of the relationship between metals in contaminated soil and in earthworm (Metaphire californica) in Hunan Province, subtropical China. Wang K; Qiao Y; Li H; Zhang H; Yue S; Ji X; Liu L Ecotoxicol Environ Saf; 2018 Jul; 156():443-451. PubMed ID: 29605664 [TBL] [Abstract][Full Text] [Related]
19. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement. Song N; Wang F; Zhang C; Tang S; Guo J; Ju X; Smith DL Int J Phytoremediation; 2013; 15(3):268-82. PubMed ID: 23488012 [TBL] [Abstract][Full Text] [Related]
20. Use of the diffusive gradients in thin films technique (DGT) with various diffusive gels for characterization of sewage sludge-contaminated soils. Kovaríková V; Docekalová H; Docekal B; Podborská M Anal Bioanal Chem; 2007 Dec; 389(7-8):2303-11. PubMed ID: 17924100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]