These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 2213429)

  • 21. Effect of cationic surfactant on transport of surface-active and non-surface-active model drugs and emulsion stability in triphasic systems.
    Chidambaram N; Burgess DJ
    AAPS PharmSci; 2000; 2(3):E28. PubMed ID: 11741244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes.
    Ogawa S; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Apr; 51(9):2806-12. PubMed ID: 12696977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in the coalescence kinetics of fat emulsions in dependence on the amount of fat and age.
    Harnisch S; Schuhmann R; Harnisch JF; Müller RH
    Pharmazie; 2002 Jan; 57(1):54-8. PubMed ID: 11836933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coagulation and electrocoagulation of oil-in-water emulsions.
    Cañizares P; Martínez F; Jiménez C; Sáez C; Rodrigo MA
    J Hazard Mater; 2008 Feb; 151(1):44-51. PubMed ID: 17583426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The emulsion flocculation stability of protein-carbohydrate diblock copolymers.
    Wooster TJ; Augustin MA
    J Colloid Interface Sci; 2007 Sep; 313(2):665-75. PubMed ID: 17540395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein concentration and protein-exposed hydrophobicity as dominant parameters determining the flocculation of protein-stabilized oil-in-water emulsions.
    Delahaije RJ; Wierenga PA; van Nieuwenhuijzen NH; Giuseppin ML; Gruppen H
    Langmuir; 2013 Sep; 29(37):11567-74. PubMed ID: 23859264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability.
    Han J; Washington C
    Int J Pharm; 2005 Jan; 288(2):263-71. PubMed ID: 15620866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevention of topical and ocular oxidative stress by positively charged submicron emulsion.
    Benita S
    Biomed Pharmacother; 1999 May; 53(4):193-206. PubMed ID: 10392291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of beta-lactoglobulin, iota-carrageenan and gelatin.
    Gu YS; Decker AE; McClements DJ
    Langmuir; 2005 Jun; 21(13):5752-60. PubMed ID: 15952819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions.
    Chanamai R; McClements DJ
    J Colloid Interface Sci; 2000 May; 225(1):214-218. PubMed ID: 10767163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of inorganic additives on solutions of nonionic surfactants V: Emulsion stability.
    Schott H; Royce AE
    J Pharm Sci; 1983 Dec; 72(12):1427-36. PubMed ID: 6663480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-iota-carrageenan membranes.
    Gu YS; Regnier L; McClements DJ
    J Colloid Interface Sci; 2005 Jun; 286(2):551-8. PubMed ID: 15897070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions.
    Faraji H; McClements DJ; Decker EA
    J Agric Food Chem; 2004 Jul; 52(14):4558-64. PubMed ID: 15237967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant.
    Binks BP; Desforges A; Duff DG
    Langmuir; 2007 Jan; 23(3):1098-106. PubMed ID: 17241019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aging of oil-in-water emulsions: the role of the oil.
    Egger H; McGrath KM
    J Colloid Interface Sci; 2006 Jul; 299(2):890-9. PubMed ID: 16600282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A concentric cylinder shear device for the study of stability in intravenous emulsions.
    Han J; Washington C; Melia CD
    Eur J Pharm Sci; 2004 Nov; 23(3):253-60. PubMed ID: 15489126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.