These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 22134493)
1. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493 [TBL] [Abstract][Full Text] [Related]
2. Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. Xu Y; Wang C; Li L; Matsumoto N; Jang K; Dong Y; Mawatari K; Suga T; Kitamori T Lab Chip; 2013 Mar; 13(6):1048-52. PubMed ID: 23377319 [TBL] [Abstract][Full Text] [Related]
3. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures. Xu Y; Wu Q; Shimatani Y; Yamaguchi K Lab Chip; 2015 Oct; 15(19):3856-61. PubMed ID: 26278885 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes. Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461 [TBL] [Abstract][Full Text] [Related]
5. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices. Shoda K; Tanaka M; Mino K; Kazoe Y Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246 [TBL] [Abstract][Full Text] [Related]
6. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 degrees C. Howlader MM; Kibria MG; Zhang F; Kim MJ Talanta; 2010 Jul; 82(2):508-15. PubMed ID: 20602928 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Abgrall P; Low LN; Nguyen NT Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971 [TBL] [Abstract][Full Text] [Related]
8. Room-temperature bonding of glass chips Kang Q; Wang C; Liu K; Kitamori T Lab Chip; 2023 Jun; 23(12):2710-2719. PubMed ID: 37212235 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Mao P; Han J Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934 [TBL] [Abstract][Full Text] [Related]
10. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp. Mikkelsen MB; Letailleur AA; Søndergård E; Barthel E; Teisseire J; Marie R; Kristensen A Lab Chip; 2012 Jan; 12(2):262-7. PubMed ID: 22081085 [TBL] [Abstract][Full Text] [Related]
11. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding. Liao KP; Yao NK; Kuo TS Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140 [TBL] [Abstract][Full Text] [Related]
12. Injection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments. Utko P; Persson F; Kristensen A; Larsen NB Lab Chip; 2011 Jan; 11(2):303-8. PubMed ID: 21057689 [TBL] [Abstract][Full Text] [Related]
13. Water-assisted CO(2) laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application. Chung CK; Chang HC; Shih TR; Lin SL; Hsiao EJ; Chen YS; Chang EC; Chen CC; Lin CC Biomed Microdevices; 2010 Feb; 12(1):107-14. PubMed ID: 19830566 [TBL] [Abstract][Full Text] [Related]
14. Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. Allen PB; Chiu DT Anal Chem; 2008 Sep; 80(18):7153-7. PubMed ID: 18690699 [TBL] [Abstract][Full Text] [Related]
15. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. He F; Cheng Y; Xu Z; Liao Y; Xu J; Sun H; Wang C; Zhou Z; Sugioka K; Midorikawa K; Xu Y; Chen X Opt Lett; 2010 Feb; 35(3):282-4. PubMed ID: 20125695 [TBL] [Abstract][Full Text] [Related]
16. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules. Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding. Díaz-González M; Baldi A Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798 [TBL] [Abstract][Full Text] [Related]
18. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices. Zhang Z; Wang X; Luo Y; He S; Wang L Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903 [TBL] [Abstract][Full Text] [Related]
19. Rapid bonding of Pyrex glass microchips. Akiyama Y; Morishima K; Kogi A; Kikutani Y; Tokeshi M; Kitamori T Electrophoresis; 2007 Mar; 28(6):994-1001. PubMed ID: 17370301 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive. Arayanarakool R; Le Gac S; van den Berg A Lab Chip; 2010 Aug; 10(16):2115-21. PubMed ID: 20556303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]