BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 22134718)

  • 1. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
    Wang L; Dong J; Ouyang W; Wang X; Tang J
    Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.
    Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ
    Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.
    Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT
    Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia.
    Attaluri A; Ma R; Qiu Y; Li W; Zhu L
    Int J Hyperthermia; 2011; 27(5):491-502. PubMed ID: 21756046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.
    Johannsen M; Thiesen B; Jordan A; Taymoorian K; Gneveckow U; Waldöfner N; Scholz R; Koch M; Lein M; Jung K; Loening SA
    Prostate; 2005 Aug; 64(3):283-92. PubMed ID: 15726645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia.
    Solopan S; Belous A; Yelenich A; Bubnovskaya L; Kovelskaya A; Podoltsev A; Kondratenko I; Osinsky S
    Exp Oncol; 2011 Sep; 33(3):130-5. PubMed ID: 21956464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment.
    Xia QS; Liu X; Xu B; Zhao TD; Li HY; Chen ZH; Xiang Q; Geng CY; Pan L; Hu RL; Qi YJ; Sun GF; Tang JT
    Oncol Rep; 2011 Apr; 25(4):953-62. PubMed ID: 21234522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor local chemohyperthermia using docetaxel-embedded magnetoliposomes: Interaction of chemotherapy and hyperthermia.
    Yoshida M; Sato M; Yamamoto Y; Maehara T; Naohara T; Aono H; Sugishita H; Sato K; Watanabe Y
    J Gastroenterol Hepatol; 2012 Feb; 27(2):406-11. PubMed ID: 22098478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.
    Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R
    Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.
    Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J
    Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma.
    Tanaka K; Ito A; Kobayashi T; Kawamura T; Shimada S; Matsumoto K; Saida T; Honda H
    J Biosci Bioeng; 2005 Jul; 100(1):112-5. PubMed ID: 16233860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperthermia potentiates oncolytic herpes viral killing of pancreatic cancer through a heat shock protein pathway.
    Eisenberg DP; Carpenter SG; Adusumilli PS; Chan MK; Hendershott KJ; Yu Z; Fong Y
    Surgery; 2010 Aug; 148(2):325-34. PubMed ID: 20633729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic mesoporous silica spheres for hyperthermia therapy.
    Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N
    Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective elimination of cancer stem cells by magnetic hyperthermia.
    Sadhukha T; Niu L; Wiedmann TS; Panyam J
    Mol Pharm; 2013 Apr; 10(4):1432-41. PubMed ID: 23432410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles.
    Ito A; Tanaka K; Honda H; Abe S; Yamaguchi H; Kobayashi T
    J Biosci Bioeng; 2003; 96(4):364-9. PubMed ID: 16233538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.
    Yoo D; Jeong H; Noh SH; Lee JH; Cheon J
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):13047-51. PubMed ID: 24281889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.