BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 22134718)

  • 21. Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer.
    Isomoto H; Ohtsuru A; Braiden V; Iwamatsu M; Miki F; Kawashita Y; Mizuta Y; Kaneda Y; Kohno S; Yamashita S
    Oncol Rep; 2006 Mar; 15(3):629-35. PubMed ID: 16465423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model.
    Shido Y; Nishida Y; Suzuki Y; Kobayashi T; Ishiguro N
    J Bone Joint Surg Br; 2010 Apr; 92(4):580-5. PubMed ID: 20357339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia.
    Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ
    Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells.
    Lin TC; Lin FH; Lin JC
    Acta Biomater; 2012 Jul; 8(7):2704-11. PubMed ID: 22484694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model.
    Le Renard PE; Buchegger F; Petri-Fink A; Bosman F; Rüfenacht D; Hofmann H; Doelker E; Jordan O
    Int J Hyperthermia; 2009 May; 25(3):229-39. PubMed ID: 19437238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
    Hou CH; Hou SM; Hsueh YS; Lin J; Wu HC; Lin FH
    Biomaterials; 2009 Aug; 30(23-24):3956-60. PubMed ID: 19446329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles.
    Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM
    Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats.
    Kawai N; Ito A; Nakahara Y; Futakuchi M; Shirai T; Honda H; Kobayashi T; Kohri K
    Prostate; 2005 Sep; 64(4):373-81. PubMed ID: 15754344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells.
    Rylander MN; Stafford RJ; Hazle J; Whitney J; Diller KR
    Int J Hyperthermia; 2011; 27(8):791-801. PubMed ID: 22098363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T-cell receptor repertoires of tumor-infiltrating lymphocytes after hyperthermia using functionalized magnetite nanoparticles.
    Ito A; Yamaguchi M; Okamoto N; Sanematsu Y; Kawabe Y; Wakamatsu K; Ito S; Honda H; Kobayashi T; Nakayama E; Tamura Y; Okura M; Yamashita T; Jimbow K; Kamihira M
    Nanomedicine (Lond); 2013 Jun; 8(6):891-902. PubMed ID: 23066648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution.
    Beola L; Grazú V; Fernández-Afonso Y; Fratila RM; de Las Heras M; de la Fuente JM; Gutiérrez L; Asín L
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12982-12996. PubMed ID: 33709682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.
    Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing the factors which modify thermal enhancement of melphalan in a spontaneous murine tumor.
    Mohamed F; Stuart OA; Glehen O; Urano M; Sugarbaker PH
    Cancer Chemother Pharmacol; 2006 Dec; 58(6):719-24. PubMed ID: 16614851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes.
    Kikumori T; Kobayashi T; Sawaki M; Imai T
    Breast Cancer Res Treat; 2009 Feb; 113(3):435-41. PubMed ID: 18311580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field.
    Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Tsunooka N; Kawachi K
    J Surg Res; 2008 May; 146(1):110-6. PubMed ID: 18155250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.