BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22135363)

  • 1. Dynamic association-dissociation and harboring of endogenous mRNAs in stress granules.
    Zhang J; Okabe K; Tani T; Funatsu T
    J Cell Sci; 2011 Dec; 124(Pt 23):4087-95. PubMed ID: 22135363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor.
    De Leeuw F; Zhang T; Wauquier C; Huez G; Kruys V; Gueydan C
    Exp Cell Res; 2007 Dec; 313(20):4130-44. PubMed ID: 17967451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules.
    Kedersha N; Chen S; Gilks N; Li W; Miller IJ; Stahl J; Anderson P
    Mol Biol Cell; 2002 Jan; 13(1):195-210. PubMed ID: 11809833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The HTLV-1 Tax protein inhibits formation of stress granules by interacting with histone deacetylase 6.
    Legros S; Boxus M; Gatot JS; Van Lint C; Kruys V; Kettmann R; Twizere JC; Dequiedt F
    Oncogene; 2011 Sep; 30(38):4050-62. PubMed ID: 21532619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules.
    Kedersha N; Cho MR; Li W; Yacono PW; Chen S; Gilks N; Golan DE; Anderson P
    J Cell Biol; 2000 Dec; 151(6):1257-68. PubMed ID: 11121440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways.
    Arimoto K; Fukuda H; Imajoh-Ohmi S; Saito H; Takekawa M
    Nat Cell Biol; 2008 Nov; 10(11):1324-32. PubMed ID: 18836437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mRNA escape from stress granule sequestration is dictated by localization to the endoplasmic reticulum.
    Unsworth H; Raguz S; Edwards HJ; Higgins CF; Yagüe E
    FASEB J; 2010 Sep; 24(9):3370-80. PubMed ID: 20453113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments.
    Quaresma AJ; Bressan GC; Gava LM; Lanza DC; Ramos CH; Kobarg J
    Exp Cell Res; 2009 Apr; 315(6):968-80. PubMed ID: 19331829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules govern stress granule mobility and dynamics.
    Nadezhdina ES; Lomakin AJ; Shpilman AA; Chudinova EM; Ivanov PA
    Biochim Biophys Acta; 2010 Mar; 1803(3):361-71. PubMed ID: 20036288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of RNA helicases in P-bodies and stress granules.
    Hilliker A
    Methods Enzymol; 2012; 511():323-46. PubMed ID: 22713327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1.
    Yang F; Peng Y; Murray EL; Otsuka Y; Kedersha N; Schoenberg DR
    Mol Cell Biol; 2006 Dec; 26(23):8803-13. PubMed ID: 16982678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of YB-1 under arsenite-induced stress: translational activation of HSP70 mRNA and control of the number of stress granules.
    Tanaka T; Ohashi S; Kobayashi S
    Biochim Biophys Acta; 2014 Mar; 1840(3):985-92. PubMed ID: 24231679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules.
    Niewidok B; Igaev M; Pereira da Graca A; Strassner A; Lenzen C; Richter CP; Piehler J; Kurre R; Brandt R
    J Cell Biol; 2018 Apr; 217(4):1303-1318. PubMed ID: 29463567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly.
    Ohshima D; Arimoto-Matsuzaki K; Tomida T; Takekawa M; Ichikawa K
    PLoS Comput Biol; 2015 Jun; 11(6):e1004326. PubMed ID: 26115353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of importin alpha1 as a novel constituent of RNA stress granules.
    Fujimura K; Suzuki T; Yasuda Y; Murata M; Katahira J; Yoneda Y
    Biochim Biophys Acta; 2010 Jul; 1803(7):865-71. PubMed ID: 20362631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment.
    Fujimura K; Kano F; Murata M
    Exp Cell Res; 2008 Feb; 314(3):543-53. PubMed ID: 18164289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing mRNA interactions with RNA granules during translation initiation inhibition.
    Zurla C; Lifland AW; Santangelo PJ
    PLoS One; 2011 May; 6(5):e19727. PubMed ID: 21573130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mRNA-capping enzyme localizes to stress granules in the cytoplasm and maintains cap homeostasis of target mRNAs.
    Gayen A; Mukherjee A; Kumar K; Majumder S; Chakrabarti S; Mukherjee C
    J Cell Sci; 2024 Jun; 137(11):. PubMed ID: 38841902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression.
    Delestienne N; Wauquier C; Soin R; Dierick JF; Gueydan C; Kruys V
    FEBS J; 2010 Jun; 277(11):2496-514. PubMed ID: 20477871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time monitoring of endogenous cytoplasmic mRNA using linear antisense 2'-O-methyl RNA probes in living cells.
    Okabe K; Harada Y; Zhang J; Tadakuma H; Tani T; Funatsu T
    Nucleic Acids Res; 2011 Mar; 39(4):e20. PubMed ID: 21106497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.