These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22135658)

  • 21. In situ detection of bacteria in calcified biofilms using FISH and CARD-FISH.
    Shiraishi F; Zippel B; Neu TR; Arp G
    J Microbiol Methods; 2008 Sep; 75(1):103-8. PubMed ID: 18571259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple DNA Characterization method using fiber-fluorescence in situ hybridization performed without DNA fragmentation.
    Hirose T; Sugiyama S
    Photochem Photobiol; 2011; 87(2):470-3. PubMed ID: 21366598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplification and detection of a Y-chromosome DNA sequence by fluorescence in situ polymerase chain reaction and flow cytometry using cells in suspension.
    Timm EA; Podniesinski E; Duckett L; Cardott J; Stewart CC
    Cytometry; 1995 Sep; 22(3):250-5. PubMed ID: 8556957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual fluorescence detection of protein and RNA in Drosophila tissues.
    Toledano H; D'Alterio C; Loza-Coll M; Jones DL
    Nat Protoc; 2012 Oct; 7(10):1808-17. PubMed ID: 22976352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries.
    Zimmerman SG; Peters NC; Altaras AE; Berg CA
    Nat Protoc; 2013 Nov; 8(11):2158-79. PubMed ID: 24113787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glyoxal-based fixation of Drosophila embryos for immunofluorescence staining and RNA in situ hybridization.
    Amin S; Basu M; Buzinova V; Delgado A; Mahadevan T; Mishra S; Zaida S; Wang X; Sokac AM
    STAR Protoc; 2023 Sep; 4(3):102385. PubMed ID: 37405926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Easy flat embedding of oriented samples in hydrophilic resin (LR White) under controlled atmosphere: application allowing both nucleic acid hybridizations (CARD-FISH) and ultrastructural observations.
    Gros O; Maurin LC
    Acta Histochem; 2008; 110(5):427-31. PubMed ID: 18187186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation of Drosophila egg chambers for imaging.
    Parton RM; Vallés AM; Dobbie IM; Davis I
    Cold Spring Harb Protoc; 2010 Apr; 2010(4):pdb.prot5402. PubMed ID: 20360356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome orientation fluorescence in situ hybridization (CO-FISH).
    Williams ES; Bailey SM
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.prot5269. PubMed ID: 20147245
    [No Abstract]   [Full Text] [Related]  

  • 30. Rapid Ovary Mass-Isolation (ROMi) to Obtain Large Quantities of Drosophila Egg Chambers for Fluorescent In Situ Hybridization.
    Jambor H; Mejstrik P; Tomancak P
    Methods Mol Biol; 2016; 1478():253-262. PubMed ID: 27730587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter.
    Taguchi T; Shinozaki Y; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    J Microbiol Methods; 2006 Nov; 67(2):373-80. PubMed ID: 16793153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-Mount RNA FISH Combined with Immunofluorescence for the Analysis of the Telomeric Ribonucleoproteins in the Drosophila Germline.
    Morgunova V; Sukhova MM; Kalmykova A
    Methods Mol Biol; 2022; 2509():157-169. PubMed ID: 35796963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.
    Huang CL; Chen CC; Lin CY; Liu WT
    Water Sci Technol; 2009; 59(10):1901-9. PubMed ID: 19474483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence in situ hybridization: technical overview.
    Bartlett JM
    Methods Mol Med; 2004; 97():77-87. PubMed ID: 15064486
    [No Abstract]   [Full Text] [Related]  

  • 35. Fluorescence in situ hybridization of bacterial cell suspensions.
    Parsley LC; Newman MM; Liles MR
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5493. PubMed ID: 20810640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence in situ hybridization in whole-mount Drosophila embryos.
    Hughes SC; Saulier-Le Drean B; Livne-Bar I; Krause HM
    Biotechniques; 1996 May; 20(5):748-50. PubMed ID: 8723908
    [No Abstract]   [Full Text] [Related]  

  • 37. Analysis of Gene Expression Patterns and RNA Localization by Fluorescence in Situ Hybridization in Whole Mount Drosophila Testes.
    Fingerhut JM; Yamashita YM
    Methods Mol Biol; 2023; 2666():15-28. PubMed ID: 37166654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ functional gene analysis: recognition of individual genes by fluorescence in situ hybridization.
    Zwirglmaier K; Fichtl K; Ludwig W
    Methods Enzymol; 2005; 397():338-51. PubMed ID: 16260301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reutilization of previously hybridized slides for fluorescence in situ hybridization.
    Epstein L; DeVries S; Waldman FM
    Cytometry; 1995 Dec; 21(4):378-81. PubMed ID: 8608736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.