BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22135858)

  • 1. Identifying candidate genes for Parkinson's disease by integrative genomics method.
    Karic A; Terzic R; Karic A; Peterlin B
    Biochem Med (Zagreb); 2011; 21(2):174-81. PubMed ID: 22135858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the BITOLA system to identify candidate genes for Parkinson's disease.
    Karić A; Karić A
    Bosn J Basic Med Sci; 2011 Aug; 11(3):185-9. PubMed ID: 21875422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets.
    Kia DA; Zhang D; Guelfi S; Manzoni C; Hubbard L; Reynolds RH; Botía J; Ryten M; Ferrari R; Lewis PA; Williams N; Trabzuni D; Hardy J; Wood NW;
    JAMA Neurol; 2021 Apr; 78(4):464-472. PubMed ID: 33523105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease.
    Dumitriu A; Golji J; Labadorf AT; Gao B; Beach TG; Myers RH; Longo KA; Latourelle JC
    BMC Med Genomics; 2016 Jan; 9():5. PubMed ID: 26793951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of transcriptome-wide association study with neuronal dysfunction assays provides functional genomics evidence for Parkinson's disease genes.
    Li J; Amoh BK; McCormick E; Tarkunde A; Zhu KF; Perez A; Mair M; Moore J; Shulman JM; Al-Ramahi I; Botas J
    Hum Mol Genet; 2023 Jan; 32(4):685-695. PubMed ID: 36173927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenome-based gene discovery provides information about Parkinson's disease drug targets.
    Chen Y; Xu R
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):493. PubMed ID: 27586503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positional integratomic approach in identification of genomic candidate regions for Parkinson's disease.
    Maver A; Peterlin B
    Bioinformatics; 2011 Jul; 27(14):1971-8. PubMed ID: 21596793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of genome-wide transcriptomics studies in Parkinson's disease.
    Borrageiro G; Haylett W; Seedat S; Kuivaniemi H; Bardien S
    Eur J Neurosci; 2018 Jan; 47(1):1-16. PubMed ID: 29068110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis.
    Ferrari R; Kia DA; Tomkins JE; Hardy J; Wood NW; Lovering RC; Lewis PA; Manzoni C
    BMC Genomics; 2018 Jun; 19(1):452. PubMed ID: 29898659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Parkinson's disease candidate genes using CAESAR and screening of MAPT and SNCAIP in South African Parkinson's disease patients.
    Keyser RJ; Oppon E; Carr JA; Bardien S
    J Neural Transm (Vienna); 2011 Jun; 118(6):889-97. PubMed ID: 21344240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic and pharmacogenomic biomarkers of Parkinson's disease.
    Alonso-Navarro H; Jimenez-Jimenez FJ; Garcia-Martin E; Agundez JA
    Curr Drug Metab; 2014 Feb; 15(2):129-81. PubMed ID: 24694231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resequencing analysis of five Mendelian genes and the top genes from genome-wide association studies in Parkinson's Disease.
    Benitez BA; Davis AA; Jin SC; Ibanez L; Ortega-Cubero S; Pastor P; Choi J; Cooper B; Perlmutter JS; Cruchaga C
    Mol Neurodegener; 2016 Apr; 11():29. PubMed ID: 27094865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic convergence of locus-based GWAS meta-analysis identifies AXIN1 as a novel Parkinson's gene.
    Saeed M
    Immunogenetics; 2018 Sep; 70(9):563-570. PubMed ID: 29923028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying consensus disease pathways in Parkinson's disease using an integrative systems biology approach.
    Edwards YJ; Beecham GW; Scott WK; Khuri S; Bademci G; Tekin D; Martin ER; Jiang Z; Mash DC; ffrench-Mullen J; Pericak-Vance MA; Tsinoremas N; Vance JM
    PLoS One; 2011 Feb; 6(2):e16917. PubMed ID: 21364952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Found in transcription: accurate Parkinson's disease classification in peripheral blood.
    Karlsson MK; Sharma P; Aasly J; Toft M; Skogar O; Sæbø S; Lönneborg A
    J Parkinsons Dis; 2013; 3(1):19-29. PubMed ID: 23938308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease.
    Jiménez-Jiménez FJ; Alonso-Navarro H; García-Martín E; Agúndez JA
    Expert Opin Drug Metab Toxicol; 2016; 12(4):433-48. PubMed ID: 26910127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Co-Expression Network Analysis Implicates microRNA Processing in Parkinson's Disease Pathogenesis.
    Chen JA
    Neurodegener Dis; 2018; 18(4):191-199. PubMed ID: 30089309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.