BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 22136106)

  • 1. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.
    Wang L; Ruiz-Agudo E; Putnis CV; Menneken M; Putnis A
    Environ Sci Technol; 2012 Jan; 46(2):834-42. PubMed ID: 22136106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ imaging of interfacial precipitation of phosphate on Goethite.
    Wang L; Putnis CV; Ruiz-Agudo E; Hövelmann J; Putnis A
    Environ Sci Technol; 2015 Apr; 49(7):4184-92. PubMed ID: 25763812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils.
    Wang L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2013; 47(23):13502-10. PubMed ID: 24228938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy.
    Wang L; Qin L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2016 Jan; 50(1):259-68. PubMed ID: 26636475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.
    Yagi S; Fukushi K
    J Colloid Interface Sci; 2012 Oct; 384(1):128-36. PubMed ID: 22832093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui.
    Rivadeneyra MA; Martín-Algarra A; Sánchez-Román M; Sánchez-Navas A; Martín-Ramos JD
    ISME J; 2010 Jul; 4(7):922-32. PubMed ID: 20182524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct imaging of nanoscale dissolution of dicalcium phosphate dihydrate by an organic ligand: concentration matters.
    Qin L; Zhang W; Lu J; Stack AG; Wang L
    Environ Sci Technol; 2013; 47(23):13365-74. PubMed ID: 24251349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent.
    Karageorgiou K; Paschalis M; Anastassakis GN
    J Hazard Mater; 2007 Jan; 139(3):447-52. PubMed ID: 16597487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcite and magnesite application to a declining Masson pine forest on strongly acidified soil in Southwestern China.
    Huang Y; Kang R; Ma X; Qi Y; Mulder J; Duan L
    Sci Total Environ; 2014 May; 481():469-78. PubMed ID: 24631610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation.
    Loffredo N; Mounier S; Thiry Y; Coppin F
    J Environ Radioact; 2011 Sep; 102(9):843-51. PubMed ID: 21683486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of calcium phosphate precipitation in simulated body fluid.
    Lu X; Leng Y
    Biomaterials; 2005 Apr; 26(10):1097-108. PubMed ID: 15451629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Qin L; Zhang W; Putnis CV; Putnis A
    Environ Sci Technol; 2018 Mar; 52(6):3493-3502. PubMed ID: 29488373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral phases of calcium phosphate.
    Nancollas GH; LoRe M; Perez L; Richardson C; Zawacki SJ
    Anat Rec; 1989 Jun; 224(2):234-41. PubMed ID: 2672888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility and batch retention of CeO2 nanoparticles in soils.
    Cornelis G; Ryan B; McLaughlin MJ; Kirby JK; Beak D; Chittleborough D
    Environ Sci Technol; 2011 Apr; 45(7):2777-82. PubMed ID: 21405081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils.
    Hale B; Evans L; Lambert R
    J Hazard Mater; 2012 Jan; 199-200():119-27. PubMed ID: 22138168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of low concentrations of phosphate ions on extraction of arsenic from naturally contaminated soil.
    Mihaljevic M; Ettler V; Sisr L; Sebek O; Strnad L; Vonásková V
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):422-7. PubMed ID: 19290445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.
    Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R
    Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of carbonate on the precipitation of calcium phosphate.
    Song Y; Hahn HH; Hoffmann E
    Environ Technol; 2002 Feb; 23(2):207-15. PubMed ID: 11950073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.