BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 22136110)

  • 21. Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae.
    Auxillos JY; Garcia-Ruiz E; Jones S; Li T; Jiang S; Dai J; Cai Y
    Biochemistry; 2019 Mar; 58(11):1492-1500. PubMed ID: 30817136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae.
    Yamanishi M; Matsuyama T
    ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Preface for special issue on synthetic biology (2013)].
    Chen G
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1041-3. PubMed ID: 24364342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae.
    Mutka SC; Bondi SM; Carney JR; Da Silva NA; Kealey JT
    FEMS Yeast Res; 2006 Jan; 6(1):40-7. PubMed ID: 16423069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast Systems Biology: Model Organism and Cell Factory.
    Nielsen J
    Biotechnol J; 2019 Sep; 14(9):e1800421. PubMed ID: 30925027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.
    Kim HU; Charusanti P; Lee SY; Weber T
    Nat Prod Rep; 2016 Aug; 33(8):933-41. PubMed ID: 27072921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic biology: lessons from engineering yeast MAPK signalling pathways.
    Furukawa K; Hohmann S
    Mol Microbiol; 2013 Apr; 88(1):5-19. PubMed ID: 23461595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolomics methods for the synthetic biology of secondary metabolism.
    Nguyen QT; Merlo ME; Medema MH; Jankevics A; Breitling R; Takano E
    FEBS Lett; 2012 Jul; 586(15):2177-83. PubMed ID: 22710183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systems-level approach for metabolic engineering of yeast cell factories.
    Kim IK; Roldão A; Siewers V; Nielsen J
    FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in yeast genome engineering.
    David F; Siewers V
    FEMS Yeast Res; 2015 Feb; 15(1):1-14. PubMed ID: 25154295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SCRaMbLEing to understand and exploit structural variation in genomes.
    Steensels J; Gorkovskiy A; Verstrepen KJ
    Nat Commun; 2018 May; 9(1):1937. PubMed ID: 29789533
    [No Abstract]   [Full Text] [Related]  

  • 33. [Application of systems biology and synthetic biology in strain improvement for biofuel production].
    Zhao X; Bai F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):880-7. PubMed ID: 20954387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yeast synthetic biology toolbox and applications for biofuel production.
    Tsai CS; Kwak S; Turner TL; Jin YS
    FEMS Yeast Res; 2015 Feb; 15(1):1-15. PubMed ID: 25195615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.
    Liu Y; Shin HD; Li J; Liu L
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1109-18. PubMed ID: 25547833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructing synthetic microbial communities to explore the ecology and evolution of symbiosis.
    Waite AJ; Shou W
    Methods Mol Biol; 2014; 1151():27-38. PubMed ID: 24838876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling challenges in the synthetic biology of secondary metabolism.
    Breitling R; Achcar F; Takano E
    ACS Synth Biol; 2013 Jul; 2(7):373-8. PubMed ID: 23659212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro DNA SCRaMbLE.
    Wu Y; Zhu RY; Mitchell LA; Ma L; Liu R; Zhao M; Jia B; Xu H; Li YX; Yang ZM; Ma Y; Li X; Liu H; Liu D; Xiao WH; Zhou X; Li BZ; Yuan YJ; Boeke JD
    Nat Commun; 2018 May; 9(1):1935. PubMed ID: 29789594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.
    Celedon JM; Bohlmann J
    Methods Enzymol; 2016; 576():47-67. PubMed ID: 27480682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.