BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22136275)

  • 1. Identification and functional characterization of a primate-specific E2F1 binding motif regulating MCPH1 expression.
    Shi L; Su B
    FEBS J; 2012 Feb; 279(3):491-503. PubMed ID: 22136275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans.
    Shi L; Li M; Lin Q; Qi X; Su B
    BMC Biol; 2013 May; 11():62. PubMed ID: 23697381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter.
    Araki K; Nakajima Y; Eto K; Ikeda MA
    Oncogene; 2003 Oct; 22(48):7632-41. PubMed ID: 14576826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene.
    Shi L; Li M; Su B
    Gene; 2012 Mar; 495(1):1-9. PubMed ID: 22240313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer.
    Lu Z; Luo RZ; Peng H; Huang M; Nishmoto A; Hunt KK; Helin K; Liao WS; Yu Y
    Oncogene; 2006 Jan; 25(2):230-9. PubMed ID: 16158053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis.
    Yang SZ; Lin FT; Lin WC
    EMBO Rep; 2008 Sep; 9(9):907-15. PubMed ID: 18660752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1.
    Jenal M; Trinh E; Britschgi C; Britschgi A; Roh V; Vorburger SA; Tobler A; Leprince D; Fey MF; Helin K; Tschan MP
    Mol Cancer Res; 2009 Jun; 7(6):916-22. PubMed ID: 19491197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of adenovirus 12 E1A transcription: E2F and ATF motifs in the E1A promoter bind nuclear protein complexes including E2F1, DP-1, cyclin A and/or RB and mediate transcriptional (auto)activation.
    Kirch HC; Pützer B; Schwabe G; Gnauck HK; Schulte Holthausen H
    Cell Mol Biol Res; 1993; 39(8):705-16. PubMed ID: 7951410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimpanzee, orangutan, mouse, and human cell cycle promoters exempt CCAAT boxes and CHR elements from interspecies differences.
    Müller GA; Heissig F; Engeland K
    Mol Biol Evol; 2007 Mar; 24(3):814-26. PubMed ID: 17205977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional promoter SNPs in cell cycle checkpoint genes.
    Bélanger H; Beaulieu P; Moreau C; Labuda D; Hudson TJ; Sinnett D
    Hum Mol Genet; 2005 Sep; 14(18):2641-8. PubMed ID: 16081466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for GEAPS, novel Glial E2F1-Associated Proteins in hamster glioma cells induced by the human neurotropic polyomavirus, JCV.
    Raj GV; Ansari SA; Khalili K
    Oncogene; 1996 Mar; 12(6):1279-88. PubMed ID: 8649830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor E2F1 is a potent transactivator of the insulin-like growth factor-I receptor (IGF-IR) gene.
    Schayek H; Bentov I; Rotem I; Pasmanik-Chor M; Ginsberg D; Plymate SR; Werner H
    Growth Horm IGF Res; 2010 Feb; 20(1):68-72. PubMed ID: 19703789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in DNA binding properties between E2F1 and E2F4 specify repression of the Mcl-1 promoter.
    Croxton R; Ma Y; Cress WD
    Oncogene; 2002 Feb; 21(10):1563-70. PubMed ID: 11896585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primate FSH-receptor promoter nucleotide sequence heterogeneity affects FSH-receptor transcription.
    Brune M; Adams C; Gromoll J
    Mol Cell Endocrinol; 2010 Apr; 317(1-2):90-8. PubMed ID: 20034540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct repression of the Mcl-1 promoter by E2F1.
    Croxton R; Ma Y; Song L; Haura EB; Cress WD
    Oncogene; 2002 Feb; 21(9):1359-69. PubMed ID: 11857079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation and expression analyses of the 7q autism susceptibility locus genes MEST , COPG2, and TSGA14 in human and anthropoid primate cortices.
    Schneider E; Mayer S; El Hajj N; Jensen LR; Kuss AW; Zischler H; Kondova I; Bontrop RE; Navarro B; Fuchs E; Zechner U; Haaf T
    Cytogenet Genome Res; 2012; 136(4):278-87. PubMed ID: 22456293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the human SOX3 promoter: identification of transcription factors implicated in basal promoter activity.
    Kovacevic Grujicic N; Mojsin M; Krstic A; Stevanovic M
    Gene; 2005 Jan; 344():287-97. PubMed ID: 15656994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of the human neural polypyrimidine tract binding protein (nPTB) gene promoter region.
    Romanelli MG; Lorenzi P; Morandi C
    Gene; 2005 Aug; 356():11-8. PubMed ID: 16002244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the beta1,4-Galactosyltransferase I promoter by E2F1.
    Wei Y; Zhou F; Ge Y; Chen H; Cui C; Liu D; Yang Z; Wu G; Shen J; Gu J; Jiang J
    J Biochem; 2010 Sep; 148(3):263-71. PubMed ID: 20538716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.