These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22136515)

  • 1. In vitro evaluation of cellular response induced by manufactured nanoparticles.
    Horie M; Kato H; Fujita K; Endoh S; Iwahashi H
    Chem Res Toxicol; 2012 Mar; 25(3):605-19. PubMed ID: 22136515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area.
    Horie M; Fujita K; Kato H; Endoh S; Nishio K; Komaba LK; Nakamura A; Miyauchi A; Kinugasa S; Hagihara Y; Niki E; Yoshida Y; Iwahashi H
    Metallomics; 2012 Apr; 4(4):350-60. PubMed ID: 22419205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion.
    Horie M; Kato H; Endoh S; Fujita K; Nishio K; Komaba LK; Fukui H; Nakamura A; Miyauchi A; Nakazato T; Kinugasa S; Yoshida Y; Hagihara Y; Morimoto Y; Iwahashi H
    Metallomics; 2011 Nov; 3(11):1244-52. PubMed ID: 21804981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells.
    Horie M; Nishio K; Kato H; Fujita K; Endoh S; Nakamura A; Miyauchi A; Kinugasa S; Yamamoto K; Niki E; Yoshida Y; Hagihara Y; Iwahashi H
    J Biochem; 2011 Oct; 150(4):461-71. PubMed ID: 21693544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polymer grafting density on silica nanoparticle toxicity.
    Lin IC; Liang M; Liu TY; Jia Z; Monteiro MJ; Toth I
    Bioorg Med Chem; 2012 Dec; 20(23):6862-9. PubMed ID: 23072957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management.
    Warheit DB; Reed KL; Sayes CM
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():61-7. PubMed ID: 19558235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment.
    Kato H; Fujita K; Horie M; Suzuki M; Nakamura A; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Kinugasa S
    Toxicol In Vitro; 2010 Apr; 24(3):1009-18. PubMed ID: 20006982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles: a review of particle toxicology following inhalation exposure.
    Bakand S; Hayes A; Dechsakulthorn F
    Inhal Toxicol; 2012; 24(2):125-35. PubMed ID: 22260506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.
    Murray AR; Kisin E; Leonard SS; Young SH; Kommineni C; Kagan VE; Castranova V; Shvedova AA
    Toxicology; 2009 Mar; 257(3):161-71. PubMed ID: 19150385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model.
    Thubagere A; Reinhard BM
    ACS Nano; 2010 Jul; 4(7):3611-22. PubMed ID: 20560658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered nanoparticle respiratory exposure and potential risks for cardiovascular toxicity: predictive tests and biomarkers.
    Simeonova PP; Erdely A
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():68-73. PubMed ID: 19558236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular effects of manufactured nanoparticles: effect of adsorption ability of nanoparticles.
    Horie M; Kato H; Iwahashi H
    Arch Toxicol; 2013 May; 87(5):771-81. PubMed ID: 23503611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing nanoparticle toxicity.
    Love SA; Maurer-Jones MA; Thompson JW; Lin YS; Haynes CL
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():181-205. PubMed ID: 22524221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile.
    Nafee N; Schneider M; Schaefer UF; Lehr CM
    Int J Pharm; 2009 Nov; 381(2):130-9. PubMed ID: 19450671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety.
    Nohynek GJ; Lademann J; Ribaud C; Roberts MS
    Crit Rev Toxicol; 2007 Mar; 37(3):251-77. PubMed ID: 17453934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The current data on nanoparticles and pleura.
    Dikensoy O; Bayram H
    Tuberk Toraks; 2010; 58(4):455-8. PubMed ID: 21341125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.