These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22137167)

  • 1. Ratchet composite thin film for low-temperature self-propelled Leidenfrost droplet.
    Feng R; Zhao W; Wu X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):450-4. PubMed ID: 22137167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric wettability of nanostructures directs leidenfrost droplets.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    ACS Nano; 2014 Jan; 8(1):860-7. PubMed ID: 24298880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length scale of Leidenfrost ratchet switches droplet directionality.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    Nanoscale; 2014 Aug; 6(15):9293-9. PubMed ID: 24986190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces.
    Kruse C; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Langmuir; 2013 Aug; 29(31):9798-806. PubMed ID: 23799305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-propelled Leidenfrost droplets on a heated glycerol pool.
    Matsumoto R; Hasegawa K
    Sci Rep; 2021 Feb; 11(1):3954. PubMed ID: 33597605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self‑propelled droplets on heated surfaces with angled self‑assembled micro/nanostructures.
    Kruse C; Somanas I; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Microfluid Nanofluidics; 2015; 18(5-6):1417-1424. PubMed ID: 30410430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon.
    Shi M; Ji X; Feng S; Yang Q; Lu TJ; Xu F
    Sci Rep; 2016 Jun; 6():28574. PubMed ID: 27338595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic surfaces with special wettability.
    Liu K; Jiang L
    Nanoscale; 2011 Mar; 3(3):825-38. PubMed ID: 21212900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro-/Nanostructures.
    Song J; Cheng W; Nie M; He X; Nam W; Cheng J; Zhou W
    ACS Nano; 2020 Aug; 14(8):9521-9531. PubMed ID: 32589403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films.
    Barkay Z
    Langmuir; 2010 Dec; 26(23):18581-4. PubMed ID: 21073155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method.
    Chen S; Lai J; Dai J; Ma H; Wang H; Yi X
    Opt Express; 2009 Dec; 17(26):24153-61. PubMed ID: 20052126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets.
    Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y
    J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil.
    Tian D; Zhang X; Wang X; Zhai J; Jiang L
    Phys Chem Chem Phys; 2011 Aug; 13(32):14606-10. PubMed ID: 21769332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Temperature-Driven Interfacial Wettability and Surface Energy Properties on Hierarchically Structured Porous Superhydrophobic Pseudoboehmite Thin Films.
    Joghee SH; Uthandi KM; Singh N; Katti S; Kumar P; Renganayagalu RK; Pullithadathil B
    Langmuir; 2020 Jun; 36(23):6352-6364. PubMed ID: 32397715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers.
    Son Y; Kim C; Yang DH; Ahn DJ
    Langmuir; 2008 Mar; 24(6):2900-7. PubMed ID: 18260678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.