These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22137448)

  • 1. A compartmental model to describe hydraulics in a full-scale waste stabilization pond.
    Alvarado A; Vedantam S; Goethals P; Nopens I
    Water Res; 2012 Feb; 46(2):521-30. PubMed ID: 22137448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond.
    Alvarado A; Vesvikar M; Cisneros JF; Maere T; Goethals P; Nopens I
    Water Res; 2013 Sep; 47(13):4528-37. PubMed ID: 23764602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial significance of water quality indicators in waste stabilization ponds--limitations of residence time distribution analysis in predicting treatment efficiency.
    Sweeney DG; Cromar NJ; Nixon JB; Ta CT; Fallowfield HJ
    Water Sci Technol; 2003; 48(2):211-8. PubMed ID: 14510213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.
    Passos RG; von Sperling M; Ribeiro TB
    Water Sci Technol; 2014; 70(3):569-75. PubMed ID: 25098890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.
    Alvarado A; Sanchez E; Durazno G; Vesvikar M; Nopens I
    Water Sci Technol; 2012; 66(11):2370-7. PubMed ID: 23032767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and calibration of a physical model to assist in optimising the hydraulic performance and design of maturation ponds.
    Aldana GJ; Lloyd BJ; Guganesharajah K; Bracho N
    Water Sci Technol; 2005; 51(12):173-81. PubMed ID: 16114680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of coliform decay within a CFD (computational fluid dynamic) model of a waste stabilisation pond.
    Shilton A; Harrison J
    Water Sci Technol; 2003; 48(2):205-10. PubMed ID: 14510212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of CFD modelling to study the hydrodynamics of various anaerobic pond configurations.
    Vega GP; Peña MR; Ramírez C; Mara DD
    Water Sci Technol; 2003; 48(2):163-71. PubMed ID: 14510207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.
    Brannock M; Wang Y; Leslie G
    Water Res; 2010 May; 44(10):3181-91. PubMed ID: 20347471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD (computational fluid dynamics) modelling of baffles for optimizing tropical waste stabilization pond systems.
    Shilton AN; Mara DD
    Water Sci Technol; 2005; 51(12):103-6. PubMed ID: 16114670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aeration patterns on the flow field in wastewater aeration tanks.
    Gresch M; Armbruster M; Braun D; Gujer W
    Water Res; 2011 Jan; 45(2):810-8. PubMed ID: 20932546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of scale and Froude number on the hydraulics of waste stabilization ponds.
    Vieira IL; Da Silva JB; Ide CN; Janzen JG
    Water Sci Technol; 2018 Jan; 77(1-2):239-247. PubMed ID: 29339623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hydraulic efficiency of disinfection systems based on residence time distribution curves.
    Wilson JM; Venayagamoorthy SK
    Environ Sci Technol; 2010 Dec; 44(24):9377-82. PubMed ID: 21090605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling and modelling of thermal changes in a large waste stabilisation pond.
    Sweeney DG; Nixon JB; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):163-72. PubMed ID: 16114679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-tolerant coliform bacteria decay rates in a full scale waste stabilization pond system in northeast Brazil.
    Macedo SL; Araújo AL; Pearson HW
    Water Sci Technol; 2011; 63(6):1321-6. PubMed ID: 21436574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to improve the separation of solid-liquid suspensions in inclined plate settlers: CFD simulation and experimental validation.
    Salem AI; Okoth G; Thöming J
    Water Res; 2011 May; 45(11):3541-9. PubMed ID: 21546049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of thermal stratification on the hydraulic behavior of waste stabilization ponds.
    Kellner E; Pires EC
    Water Sci Technol; 2002; 45(1):41-8. PubMed ID: 11833731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.
    Meroney RN; Colorado PE
    Water Res; 2009 Mar; 43(4):1040-50. PubMed ID: 19135698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid flow pattern and water residence time in waste stabilisation ponds.
    Badrot-Nico F; Guinot V; Brissaud F
    Water Sci Technol; 2009; 59(6):1061-8. PubMed ID: 19342800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.