BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22137655)

  • 41. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor.
    Lee FJ; Xue S; Pei L; Vukusic B; Chéry N; Wang Y; Wang YT; Niznik HB; Yu XM; Liu F
    Cell; 2002 Oct; 111(2):219-30. PubMed ID: 12408866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupling of M2 muscarinic receptors to membrane ion channels via phosphoinositide 3-kinase gamma and atypical protein kinase C.
    Wang YX; Dhulipala PD; Li L; Benovic JL; Kotlikoff MI
    J Biol Chem; 1999 May; 274(20):13859-64. PubMed ID: 10318793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid mediators modulate NMDA receptor currents in a Xenopus oocyte expression system.
    Tabuchi S; Kume K; Aihara M; Ishii S; Mishina M; Shimizu T
    Neurosci Lett; 1997 Nov; 237(1):13-6. PubMed ID: 9406868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitization and translocation of TRPV1 by insulin and IGF-I.
    Van Buren JJ; Bhat S; Rotello R; Pauza ME; Premkumar LS
    Mol Pain; 2005 Apr; 1():17. PubMed ID: 15857517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Presynaptic and Ca(2+)-independent PKC subspecies modulates NMDAR1 current.
    Koga T; Sakai N; Tanaka C; Saito N
    Neuroreport; 1996 Jan; 7(2):477-80. PubMed ID: 8730809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.
    Shepherd PR; Withers DJ; Siddle K
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):471-90. PubMed ID: 9677303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes.
    Souktani R; Berdeaux A; Ghaleh B; Giudicelli JF; Guize L; Le Heuzey JY; Henry P
    Am J Physiol Cell Physiol; 2000 Jul; 279(1):C158-65. PubMed ID: 10898727
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stimulation of an insulin receptor activates and down-regulates the Ca2+-independent protein kinase C, Apl II, through a Wortmannin-sensitive signaling pathway in Aplysia.
    Sossin WS; Chen CS; Toker A
    J Neurochem; 1996 Jul; 67(1):220-8. PubMed ID: 8666995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrocarbon molar water solubility predicts NMDA vs. GABAA receptor modulation.
    Brosnan RJ; Pham TL
    BMC Pharmacol Toxicol; 2014 Nov; 15():62. PubMed ID: 25410726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphatidylinositol-4,5-bisphosphate and alpha-actinin: two-component hinge for the NMDA receptor.
    Gao L
    J Neurosci; 2007 Sep; 27(39):10321-2. PubMed ID: 17898203
    [No Abstract]   [Full Text] [Related]  

  • 51. Evidence for a role of protein kinase C zeta subspecies in maturation of Xenopus laevis oocytes.
    Dominguez I; Diaz-Meco MT; Municio MM; Berra E; García de Herreros A; Cornet ME; Sanz L; Moscat J
    Mol Cell Biol; 1992 Sep; 12(9):3776-83. PubMed ID: 1508183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphoinositide 3-kinase: the protein kinase that time forgot.
    Foukas LC; Shepherd PR
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):330-1. PubMed ID: 15046601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of NMDA receptors.
    MacDonald JF; Xiong XG; Lu WY; Raouf R; Orser BA
    Prog Brain Res; 1998; 116():191-208. PubMed ID: 9932378
    [No Abstract]   [Full Text] [Related]  

  • 54. The role of phosphoinositide 3-kinase in human disease.
    Cantley LC
    Harvey Lect; 2004-2005; 100():103-22. PubMed ID: 16970176
    [No Abstract]   [Full Text] [Related]  

  • 55. The role of protein kinase C in insulin action.
    Farese RV; Standaert ML; Arnold T; Yu B; Ishizuka T; Hoffman J; Vila M; Cooper DR
    Cell Signal; 1992 Mar; 4(2):133-43. PubMed ID: 1616820
    [No Abstract]   [Full Text] [Related]  

  • 56. Emerging Perspectives on the Impact of Diabetes Mellitus and Anti-Diabetic Drugs on Premenstrual Syndrome. A Narrative Review.
    Azmy Nabeh O; Amr A; Faoosa AM; Esmat E; Osama A; Khedr AS; Amin B; Saud AI; Elmorsy SA
    Diabetes Ther; 2024 Jun; 15(6):1279-1299. PubMed ID: 38668996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential role of insulin on the pathogenesis of depression.
    Zou XH; Sun LH; Yang W; Li BJ; Cui RJ
    Cell Prolif; 2020 May; 53(5):e12806. PubMed ID: 32281722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NMDA reduces Tau phosphorylation in rat hippocampal slices by targeting NR2A receptors, GSK3β, and PKC activities.
    De Montigny A; Elhiri I; Allyson J; Cyr M; Massicotte G
    Neural Plast; 2013; 2013():261593. PubMed ID: 24349798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of subunit phosphorylation in regulating glutamate receptor function.
    Wang JQ; Guo ML; Jin DZ; Xue B; Fibuch EE; Mao LM
    Eur J Pharmacol; 2014 Apr; 728():183-7. PubMed ID: 24291102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PI 3-kinase and PKCζ mediate insulin-induced potentiation of NMDA receptor currents in Xenopus oocytes.
    Jones ML; Liao GY; Malecki R; Li M; Salazar NM; Leonard JP
    Brain Res; 2012 Jan; 1432():7-14. PubMed ID: 22137655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.