These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 22137877)
1. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Berry C J Invertebr Pathol; 2012 Jan; 109(1):1-10. PubMed ID: 22137877 [TBL] [Abstract][Full Text] [Related]
2. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
3. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Wirth MC; Federici BA; Walton WE Appl Environ Microbiol; 2000 Mar; 66(3):1093-7. PubMed ID: 10698776 [TBL] [Abstract][Full Text] [Related]
4. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Lacey LA J Am Mosq Control Assoc; 2007; 23(2 Suppl):133-63. PubMed ID: 17853604 [TBL] [Abstract][Full Text] [Related]
5. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
7. Properties and applied use of the mosquitocidal bacterium, Park HW; Bideshi DK; Federici BA J Asia Pac Entomol; 2010 Sep; 13(3):159-168. PubMed ID: 28883761 [TBL] [Abstract][Full Text] [Related]
8. Microbial control of mosquitoes with special emphasis on bacterial control. Bhattacharya PR Indian J Malariol; 1998 Dec; 35(4):206-24. PubMed ID: 10748561 [TBL] [Abstract][Full Text] [Related]
9. Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry-toxin activity and suppress cry-resistance in Culex quinquefasciatus. Wirth MC; Berry C; Walton WE; Federici BA J Invertebr Pathol; 2014 Jan; 115():62-7. PubMed ID: 24144574 [TBL] [Abstract][Full Text] [Related]
10. [Transgenic bioinsecticides inimical to parasites, but imical to environment]. Kucińska J; Lonc E; Rydzanicz K Wiad Parazytol; 2003; 49(1):11-20. PubMed ID: 16889013 [TBL] [Abstract][Full Text] [Related]
11. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. Wirth MC; Jiannino JA; Federici BA; Walton WE J Med Entomol; 2004 Sep; 41(5):935-41. PubMed ID: 15535624 [TBL] [Abstract][Full Text] [Related]
12. Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. medellin and B. thuringiensis subsp. israelensis Synergize Bacillus sphaericus against Aedes aegypti and resistant Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Delécluse A; Walton WE Appl Environ Microbiol; 2001 Jul; 67(7):3280-4. PubMed ID: 11425753 [TBL] [Abstract][Full Text] [Related]
13. Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Thanabalu T; Hindley J; Brenner S; Oei C; Berry C Appl Environ Microbiol; 1992 Mar; 58(3):905-10. PubMed ID: 1575492 [TBL] [Abstract][Full Text] [Related]
14. Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Silva-Filha MHNL; Romão TP; Rezende TMT; Carvalho KDS; Gouveia de Menezes HS; Alexandre do Nascimento N; Soberón M; Bravo A Toxins (Basel); 2021 Jul; 13(8):. PubMed ID: 34437394 [TBL] [Abstract][Full Text] [Related]
15. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Wirth MC; Yang Y; Walton WE; Federici BA; Berry C Appl Environ Microbiol; 2007 Oct; 73(19):6066-71. PubMed ID: 17704274 [TBL] [Abstract][Full Text] [Related]
16. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria. Ibrahim MA; Griko NB; Bulla LA Exp Biol Med (Maywood); 2013 Apr; 238(4):350-9. PubMed ID: 23760000 [TBL] [Abstract][Full Text] [Related]
17. Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Jiannino JA; Federici BA; Walton WE J Invertebr Pathol; 2005 Feb; 88(2):154-62. PubMed ID: 15766932 [TBL] [Abstract][Full Text] [Related]
18. [The synergism between Mtx1 from Bacillus sphaericus and Cyt1 Aa from Bacillus thuringiensis to Culex quinquefasciatus]. Yang YK; Cai QX; Cai YJ; Yan JP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):456-60. PubMed ID: 17672305 [TBL] [Abstract][Full Text] [Related]
19. Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Nishiwaki H; Nakashima K; Ishida C; Kawamura T; Matsuda K Appl Environ Microbiol; 2007 May; 73(10):3404-11. PubMed ID: 17400778 [TBL] [Abstract][Full Text] [Related]
20. Bacillus thuringiensis toxins: an overview of their biocidal activity. Palma L; Muñoz D; Berry C; Murillo J; Caballero P Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]