These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22137999)

  • 21. The relationship between drug concentration, mixing time, blending order and ternary dry powder inhalation performance.
    Jones MD; Santo JG; Yakub B; Dennison M; Master H; Buckton G
    Int J Pharm; 2010 May; 391(1-2):137-47. PubMed ID: 20211715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agglomeration tendency in dry pharmaceutical granular systems.
    Lachiver ED; Abatzoglou N; Cartilier L; Simard JS
    Eur J Pharm Biopharm; 2006 Oct; 64(2):193-9. PubMed ID: 16797949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production.
    Chow SF; Sun CC; Chow AH
    Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former.
    Yamasaki K; Kwok PC; Fukushige K; Prud'homme RK; Chan HK
    Int J Pharm; 2011 Nov; 420(1):34-42. PubMed ID: 21864662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):94-105. PubMed ID: 17981448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Colloids Surf B Biointerfaces; 2012 Jun; 94():68-72. PubMed ID: 22326649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of drug nanocrystals by controlled crystallization: application of a 3-way nozzle to prevent premature crystallization for large scale production.
    de Waard H; Grasmeijer N; Hinrichs WL; Eissens AC; Pfaffenbach PP; Frijlink HW
    Eur J Pharm Sci; 2009 Oct; 38(3):224-9. PubMed ID: 19631270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of concentrated stable fenofibrate suspensions via liquid antisolvent precipitation.
    Azad MA; Knieke C; To D; Davé R
    Drug Dev Ind Pharm; 2014 Dec; 40(12):1693-703. PubMed ID: 24102617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple method for the preparation of monodisperse protein-loaded microspheres with high encapsulation efficiencies.
    Cheng X; Liu R; He Y
    Eur J Pharm Biopharm; 2010 Nov; 76(3):336-41. PubMed ID: 20691263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of poly(MePEGCA-co-HDCA) nanoparticles with confined impinging jets reactor: experimental and modeling study.
    Lince F; Bolognesi S; Marchisio DL; Stella B; Dosio F; Barresi AA; Cattel L
    J Pharm Sci; 2011 Jun; 100(6):2391-405. PubMed ID: 21259236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors.
    Ali HS; York P; Blagden N
    Int J Pharm; 2009 Jun; 375(1-2):107-13. PubMed ID: 19481696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy.
    Lee SH; Heng D; Ng WK; Chan HK; Tan RB
    Int J Pharm; 2011 Jan; 403(1-2):192-200. PubMed ID: 20951781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
    Chung YC; Hsu YL; Jen CP; Lu MC; Lin YC
    Lab Chip; 2004 Feb; 4(1):70-7. PubMed ID: 15007444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process.
    Yabu H; Higuchi T; Ijiro K; Shimomura M
    Chaos; 2005 Dec; 15(4):047505. PubMed ID: 16396598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developing an environmentally benign process for the production of microparticles: amphiphilic crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):72-82. PubMed ID: 18082385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size prediction of recombinant human growth hormone nanoparticles produced by supercritical fluid precipitation.
    Pyo D; Lim C; Cho D; Oh D
    Anal Bioanal Chem; 2007 Feb; 387(3):901-7. PubMed ID: 17186228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes.
    Cabral-Marques H; Almeida R
    Eur J Pharm Biopharm; 2009 Sep; 73(1):121-9. PubMed ID: 19446024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of a dense gas solvent exchange process for the impregnation of pharmaceuticals into porous chitosan.
    Ji C; Barrett A; Poole-Warren LA; Foster NR; Dehghani F
    Int J Pharm; 2010 May; 391(1-2):187-96. PubMed ID: 20214968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution.
    Sinswat P; Gao X; Yacaman MJ; Williams RO; Johnston KP
    Int J Pharm; 2005 Sep; 302(1-2):113-24. PubMed ID: 16109466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution.
    Moshashaée S; Bisrat M; Forbes RT; Quinn EA; Nyqvist H; York P
    J Pharm Pharmacol; 2003 Feb; 55(2):185-92. PubMed ID: 12631410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.