These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22138337)
1. As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Paikaray S; Göttlicher J; Peiffer S Chemosphere; 2012 Feb; 86(6):557-64. PubMed ID: 22138337 [TBL] [Abstract][Full Text] [Related]
3. Sorption of arsenic(V) and arsenic(III) to schwertmannite. Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855 [TBL] [Abstract][Full Text] [Related]
4. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Liao Y; Liang J; Zhou L Chemosphere; 2011 Apr; 83(3):295-301. PubMed ID: 21239041 [TBL] [Abstract][Full Text] [Related]
5. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Asta MP; Cama J; Martínez M; Giménez J J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332 [TBL] [Abstract][Full Text] [Related]
6. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551 [TBL] [Abstract][Full Text] [Related]
7. Facilitating role of biogenetic schwertmannite in the reduction of Cr(VI) by sulfide and its mechanism. Zhou P; Li Y; Shen Y; Lan Y; Zhou L J Hazard Mater; 2012 Oct; 237-238():194-8. PubMed ID: 22954599 [TBL] [Abstract][Full Text] [Related]
8. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite. Wang Y; Gao M; Huang W; Wang T; Liu Y Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940 [TBL] [Abstract][Full Text] [Related]
9. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973 [TBL] [Abstract][Full Text] [Related]
10. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
11. X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation. Jeong HY; Han YS; Hayes KF Environ Sci Technol; 2010 Feb; 44(3):955-61. PubMed ID: 20041638 [TBL] [Abstract][Full Text] [Related]
12. Solid-solution reactions in As(V) sorption by schwertmannite. Fukushi K; Sato T; Yanase N Environ Sci Technol; 2003 Aug; 37(16):3581-6. PubMed ID: 12953869 [TBL] [Abstract][Full Text] [Related]
13. Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Deschamps E; Ciminelli VS; Höll WH Water Res; 2005 Dec; 39(20):5212-20. PubMed ID: 16290184 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Jönsson J; Sjöberg S; Lövgren L Water Res; 2006 Mar; 40(5):969-74. PubMed ID: 16487563 [TBL] [Abstract][Full Text] [Related]
15. Redox reactions in the Fe-As-O2 system. Johnston RB; Singer PC Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697 [TBL] [Abstract][Full Text] [Related]
16. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Cutting RS; Coker VS; Telling ND; Kimber RL; van der Laan G; Pattrick RA; Vaughan DJ; Arenholz E; Lloyd JR Environ Sci Technol; 2012 Nov; 46(22):12591-9. PubMed ID: 23043215 [TBL] [Abstract][Full Text] [Related]
17. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction. Schoepfer VA; Burton ED; Johnston SG; Kraal P Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942 [TBL] [Abstract][Full Text] [Related]
18. Arsenic removal from an aqueous solution by modified A. niger biomass: batch kinetic and isotherm studies. Pokhrel D; Viraraghavan T J Hazard Mater; 2008 Feb; 150(3):818-25. PubMed ID: 17582682 [TBL] [Abstract][Full Text] [Related]
19. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater. Liu F; Zhou J; Zhang S; Liu L; Zhou L; Fan W PLoS One; 2015; 10(9):e0138891. PubMed ID: 26398214 [TBL] [Abstract][Full Text] [Related]
20. Photocatalytic reduction of Cr(VI) by small molecular weight organic acids over schwertmannite. Jiang D; Li Y; Wu Y; Zhou P; Lan Y; Zhou L Chemosphere; 2012 Oct; 89(7):832-7. PubMed ID: 22652441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]