BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 22138376)

  • 1. Repair of persistent strand breaks in the mitochondrial genome.
    Sykora P; Wilson DM; Bohr VA
    Mech Ageing Dev; 2012 Apr; 133(4):169-75. PubMed ID: 22138376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases.
    Hegde ML; Mantha AK; Hazra TK; Bhakat KK; Mitra S; Szczesny B
    Mech Ageing Dev; 2012 Apr; 133(4):157-68. PubMed ID: 22313689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long patch base excision repair in mammalian mitochondrial genomes.
    Szczesny B; Tann AW; Longley MJ; Copeland WC; Mitra S
    J Biol Chem; 2008 Sep; 283(39):26349-56. PubMed ID: 18635552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes.
    Hegde ML; Izumi T; Mitra S
    Prog Mol Biol Transl Sci; 2012; 110():123-53. PubMed ID: 22749145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
    Hegde ML; Hazra TK; Mitra S
    Cell Res; 2008 Jan; 18(1):27-47. PubMed ID: 18166975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5'-EXO/endonuclease) in their repair.
    Tann AW; Boldogh I; Meiss G; Qian W; Van Houten B; Mitra S; Szczesny B
    J Biol Chem; 2011 Sep; 286(37):31975-83. PubMed ID: 21768646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways.
    Fortini P; Dogliotti E
    DNA Repair (Amst); 2007 Apr; 6(4):398-409. PubMed ID: 17129767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of TDP1 and APTX in mitochondrial DNA repair.
    Meagher M; Lightowlers RN
    Biochimie; 2014 May; 100():121-4. PubMed ID: 24161509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases.
    Mantha AK; Sarkar B; Tell G
    Mitochondrion; 2014 May; 16():38-49. PubMed ID: 24220222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3'-phosphatase in maintenance of mitochondrial genome.
    Mandal SM; Hegde ML; Chatterjee A; Hegde PM; Szczesny B; Banerjee D; Boldogh I; Gao R; Falkenberg M; Gustafsson CM; Sarkar PS; Hazra TK
    J Biol Chem; 2012 Jan; 287(4):2819-29. PubMed ID: 22130663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin.
    El-Khamisy SF; Katyal S; Patel P; Ju L; McKinnon PJ; Caldecott KW
    DNA Repair (Amst); 2009 Jun; 8(6):760-6. PubMed ID: 19303373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial base excision repair assays.
    Maynard S; de Souza-Pinto NC; Scheibye-Knudsen M; Bohr VA
    Methods; 2010 Aug; 51(4):416-25. PubMed ID: 20188838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells.
    Bohr VA
    Free Radic Biol Med; 2002 May; 32(9):804-12. PubMed ID: 11978482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of base excision DNA repair in age-related neurodegenerative diseases.
    Leandro GS; Sykora P; Bohr VA
    Mutat Res; 2015 Jun; 776():31-9. PubMed ID: 26255938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria.
    Liu P; Qian L; Sung JS; de Souza-Pinto NC; Zheng L; Bogenhagen DF; Bohr VA; Wilson DM; Shen B; Demple B
    Mol Cell Biol; 2008 Aug; 28(16):4975-87. PubMed ID: 18541666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base excision repair of oxidative DNA damage and association with cancer and aging.
    Maynard S; Schurman SH; Harboe C; de Souza-Pinto NC; Bohr VA
    Carcinogenesis; 2009 Jan; 30(1):2-10. PubMed ID: 18978338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging.
    Kamenisch Y; Fousteri M; Knoch J; von Thaler AK; Fehrenbacher B; Kato H; Becker T; Dollé ME; Kuiper R; Majora M; Schaller M; van der Horst GT; van Steeg H; Röcken M; Rapaport D; Krutmann J; Mullenders LH; Berneburg M
    J Exp Med; 2010 Feb; 207(2):379-90. PubMed ID: 20100872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA repair in neurons: so if they don't divide what's to repair?
    Fishel ML; Vasko MR; Kelley MR
    Mutat Res; 2007 Jan; 614(1-2):24-36. PubMed ID: 16879837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin.
    Boetefuer EL; Lake RJ; Dreval K; Fan HY
    J Biol Chem; 2018 Nov; 293(46):17863-17874. PubMed ID: 30266807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA repair in mammalian cells: Base excision repair: the long and short of it.
    Robertson AB; Klungland A; Rognes T; Leiros I
    Cell Mol Life Sci; 2009 Mar; 66(6):981-93. PubMed ID: 19153658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.