BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22138386)

  • 1. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
    Baldazzi V; Ropers D; Geiselmann J; Kahn D; de Jong H
    J Theor Biol; 2012 Feb; 295():100-15. PubMed ID: 22138386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli.
    Gutierrez-Ríos RM; Freyre-Gonzalez JA; Resendis O; Collado-Vides J; Saier M; Gosset G
    BMC Microbiol; 2007 Jun; 7():53. PubMed ID: 17559662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A discrete mathematical model applied to genetic regulation and metabolic networks.
    Asenjo AJ; Ramirez P; Rapaport I; Aracena J; Goles E; Andrews BA
    J Microbiol Biotechnol; 2007 Mar; 17(3):496-510. PubMed ID: 18050955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose.
    Kim J; Copley SD
    Biochemistry; 2007 Nov; 46(44):12501-11. PubMed ID: 17935357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Csr System Regulates
    Morin M; Ropers D; Cinquemani E; Portais JC; Enjalbert B; Cocaign-Bousquet M
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses.
    Phue JN; Noronha SB; Hattacharyya R; Wolfe AJ; Shiloach J
    Biotechnol Bioeng; 2005 Jun; 90(7):805-20. PubMed ID: 15806547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.
    Sotiropoulos V; Kaznessis YN
    BMC Syst Biol; 2007 Jan; 1():7. PubMed ID: 17408514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli.
    Rahman M; Hasan MR; Shimizu K
    Biotechnol Lett; 2008 May; 30(5):853-60. PubMed ID: 18175070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Boolean and piecewise affine differential models for genetic networks.
    Chaves M; Tournier L; Gouzé JL
    Acta Biotheor; 2010 Sep; 58(2-3):217-32. PubMed ID: 20665073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Escherichia coli for efficient cellobiose utilization.
    Vinuselvi P; Lee SK
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):125-32. PubMed ID: 21713510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elementary network reconstruction: a framework for the analysis of regulatory networks in biological systems.
    Dharmadi Y; Gonzalez R
    J Theor Biol; 2010 Apr; 263(4):499-509. PubMed ID: 20004670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a Bacterial Luciferase Monitoring System To Estimate Real-Time Dynamics of Intracellular Metabolism in Escherichia coli.
    Shimada T; Tanaka K
    Appl Environ Microbiol; 2016 Oct; 82(19):5960-8. PubMed ID: 27474708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli.
    Oh MK; Liao JC
    Biotechnol Prog; 2000; 16(2):278-86. PubMed ID: 10753455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relations are subtle in genetic regulatory networks.
    Wall ME
    Math Biosci; 2011 May; 231(1):61-8. PubMed ID: 21329703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks.
    Batt G; Besson B; Ciron PE; de Jong H; Dumas E; Geiselmann J; Monte R; Monteiro PT; Page M; Rechenmann F; Ropers D
    Methods Mol Biol; 2012; 804():439-62. PubMed ID: 22144166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum.
    Teramoto H; Inui M; Yukawa H
    J Biotechnol; 2011 Jul; 154(2-3):114-25. PubMed ID: 21277916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
    Auchter M; Cramer A; Hüser A; Rückert C; Emer D; Schwarz P; Arndt A; Lange C; Kalinowski J; Wendisch VF; Eikmanns BJ
    J Biotechnol; 2011 Jul; 154(2-3):126-39. PubMed ID: 20620178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of gene expression in flux balance models of metabolism.
    Covert MW; Schilling CH; Palsson B
    J Theor Biol; 2001 Nov; 213(1):73-88. PubMed ID: 11708855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.