BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22138386)

  • 41. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway.
    Oldiges M; Kunze M; Degenring D; Sprenger GA; Takors R
    Biotechnol Prog; 2004; 20(6):1623-33. PubMed ID: 15575692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Internal versus external effector and transcription factor gene pairs differ in their relative chromosomal position in Escherichia coli.
    Janga SC; Salgado H; Collado-Vides J; Martínez-Antonio A
    J Mol Biol; 2007 Apr; 368(1):263-72. PubMed ID: 17321548
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase.
    Vemuri GN; Minning TA; Altman E; Eiteman MA
    Biotechnol Bioeng; 2005 Apr; 90(1):64-76. PubMed ID: 15736164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of carbon source addition on toluene biodegradation by an Escherichia coli DH5alpha transconjugant harboring the TOL plasmid.
    Ikuma K; Gunsch C
    Biotechnol Bioeng; 2010 Oct; 107(2):269-77. PubMed ID: 20506384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving lycopene production in Escherichia coli by engineering metabolic control.
    Farmer WR; Liao JC
    Nat Biotechnol; 2000 May; 18(5):533-7. PubMed ID: 10802621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time monitoring of metabolic shift and transcriptional induction of yciG::luxCDABE E. coli reporter strain to a glucose pulse of different concentrations.
    Sunya S; Gorret N; Delvigne F; Uribelarrea JL; Molina-Jouve C
    J Biotechnol; 2012 Feb; 157(3):379-90. PubMed ID: 22209969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic optimization of metabolic networks coupled with gene expression.
    Waldherr S; Oyarzún DA; Bockmayr A
    J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating microarrays using a semiparametric approach: application to the central carbon metabolism of Escherichia coli BL21 and JM109.
    Phue JN; Kedem B; Jaluria P; Shiloach J
    Genomics; 2007 Feb; 89(2):300-5. PubMed ID: 17125967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic characterization of Escherichia coli strains adapted to growth on lactate.
    Hua Q; Joyce AR; Palsson BØ; Fong SS
    Appl Environ Microbiol; 2007 Jul; 73(14):4639-47. PubMed ID: 17513588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic modelling of central carbon metabolism in Escherichia coli.
    Peskov K; Mogilevskaya E; Demin O
    FEBS J; 2012 Sep; 279(18):3374-85. PubMed ID: 22823407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multi-objective shadow prices point at principles of metabolic regulation.
    Sajitz-Hermstein M; Nikoloski Z
    Biosystems; 2016 Aug; 146():91-101. PubMed ID: 27312384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein acetylation dynamics in response to carbon overflow in Escherichia coli.
    Schilling B; Christensen D; Davis R; Sahu AK; Hu LI; Walker-Peddakotla A; Sorensen DJ; Zemaitaitis B; Gibson BW; Wolfe AJ
    Mol Microbiol; 2015 Dec; 98(5):847-63. PubMed ID: 26264774
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution.
    Takenaka Y; Seno S; Matsuda H
    J Bioinform Comput Biol; 2015 Oct; 13(5):1543002. PubMed ID: 26508425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein expression dynamics during Escherichia coli glucose-lactose diauxie.
    Mostovenko E; Deelder AM; Palmblad M
    BMC Microbiol; 2011 Jun; 11():126. PubMed ID: 21631920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Model reduction using piecewise-linear approximations preserves dynamic properties of the carbon starvation response in Escherichia coli.
    Ropers D; Baldazzi V; de Jong H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):166-81. PubMed ID: 21071805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding carbon catabolite repression in Escherichia coli using quantitative models.
    Kremling A; Geiselmann J; Ropers D; de Jong H
    Trends Microbiol; 2015 Feb; 23(2):99-109. PubMed ID: 25475882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population.
    Labhsetwar P; Cole JA; Roberts E; Price ND; Luthey-Schulten ZA
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):14006-11. PubMed ID: 23908403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic flux balance analysis of diauxic growth in Escherichia coli.
    Mahadevan R; Edwards JS; Doyle FJ
    Biophys J; 2002 Sep; 83(3):1331-40. PubMed ID: 12202358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli.
    Covert MW; Xiao N; Chen TJ; Karr JR
    Bioinformatics; 2008 Sep; 24(18):2044-50. PubMed ID: 18621757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The correlation between architecture and mRNA abundance in the genetic regulatory network of Escherichia coli.
    Grondin Y; Raine DJ; Norris V
    BMC Syst Biol; 2007 Jul; 1():30. PubMed ID: 17640329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.