These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22138447)

  • 1. Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump.
    Loo TW; Bartlett MC; Shi L; Clarke DM
    Biochem Pharmacol; 2012 Feb; 83(3):345-54. PubMed ID: 22138447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rescue of DeltaF508 and other misprocessed CFTR mutants by a novel quinazoline compound.
    Loo TW; Bartlett MC; Clarke DM
    Mol Pharm; 2005; 2(5):407-13. PubMed ID: 16196493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.
    Wang Y; Bartlett MC; Loo TW; Clarke DM
    Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2007 Sep; 406(2):257-63. PubMed ID: 17535157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correctors promote folding of the CFTR in the endoplasmic reticulum.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chemical corrector modifies the channel function of F508del-CFTR.
    Kim Chiaw P; Wellhauser L; Huan LJ; Ramjeesingh M; Bear CE
    Mol Pharmacol; 2010 Sep; 78(3):411-8. PubMed ID: 20501743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.
    Loo TW; Bartlett MC; Clarke DM
    Biochem Pharmacol; 2013 Sep; 86(5):612-9. PubMed ID: 23835419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzbromarone stabilizes ΔF508 CFTR at the cell surface.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2011 May; 50(21):4393-5. PubMed ID: 21520952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability.
    Wellhauser L; Kim Chiaw P; Pasyk S; Li C; Ramjeesingh M; Bear CE
    Mol Pharmacol; 2009 Jun; 75(6):1430-8. PubMed ID: 19339490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynasore inhibits removal of wild-type and DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) from the plasma membrane.
    Young A; Gentzsch M; Abban CY; Jia Y; Meneses PI; Bridges RJ; Bradbury NA
    Biochem J; 2009 Jul; 421(3):377-85. PubMed ID: 19442237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network.
    Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N
    J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(46):33247-33251. PubMed ID: 17911111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation.
    Rapino D; Sabirzhanova I; Lopes-Pacheco M; Grover R; Guggino WB; Cebotaru L
    PLoS One; 2015; 10(3):e0119796. PubMed ID: 25799511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of CFTR folding defects with correctors that function as pharmacological chaperones.
    Loo TW; Clarke DM
    Methods Mol Biol; 2011; 741():23-37. PubMed ID: 21594776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally unstable gating of the most common cystic fibrosis mutant channel (ΔF508): "rescue" by suppressor mutations in nucleotide binding domain 1 and by constitutive mutations in the cytosolic loops.
    Wang W; Okeyo GO; Tao B; Hong JS; Kirk KL
    J Biol Chem; 2011 Dec; 286(49):41937-41948. PubMed ID: 21965669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.