These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 22138897)
1. Robust control of CPG-based 3D neuromusculoskeletal walking model. Kim Y; Tagawa Y; Obinata G; Hase K Biol Cybern; 2011 Oct; 105(3-4):269-82. PubMed ID: 22138897 [TBL] [Abstract][Full Text] [Related]
2. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot. Or J Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370 [TBL] [Abstract][Full Text] [Related]
3. Towards a general neural controller for quadrupedal locomotion. Maufroy C; Kimura H; Takase K Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136 [TBL] [Abstract][Full Text] [Related]
4. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Nassour J; Hénaff P; Benouezdou F; Cheng G Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353 [TBL] [Abstract][Full Text] [Related]
5. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427 [TBL] [Abstract][Full Text] [Related]
6. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped. Spitz J; Evstrachin A; Zacksenhouse M Bioinspir Biomim; 2015 Aug; 10(5):056005. PubMed ID: 26291076 [TBL] [Abstract][Full Text] [Related]
7. Robustness of connectionist swimming controllers against random variation in neural connections. Or J Neural Comput; 2007 Jun; 19(6):1568-88. PubMed ID: 17444760 [TBL] [Abstract][Full Text] [Related]
8. A reflexive neural network for dynamic biped walking control. Geng T; Porr B; Wörgötter F Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061 [TBL] [Abstract][Full Text] [Related]
9. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller. Barron-Zambrano JH; Torres-Huitzil C Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905 [TBL] [Abstract][Full Text] [Related]
10. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model. Li W; Szczecinski NS; Quinn RD Bioinspir Biomim; 2017 Oct; 12(6):065002. PubMed ID: 28748830 [TBL] [Abstract][Full Text] [Related]
11. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related]
12. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic. Li TH; Su YT; Lai SW; Hu JJ IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871 [TBL] [Abstract][Full Text] [Related]
13. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. Ajoudani A; Erfanian A IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284 [TBL] [Abstract][Full Text] [Related]
14. Comparing different controllers for the coordination of a six-legged walker. Roggendorf T Biol Cybern; 2005 Apr; 92(4):261-74. PubMed ID: 15806391 [TBL] [Abstract][Full Text] [Related]
15. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach. Chien YH; Wang WY; Leu YG; Lee TT IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):542-52. PubMed ID: 20858584 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic approaches to the control of underwater walking machines. Ayers J; Witting J Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):273-95. PubMed ID: 17148060 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of two-dimensional human walking: a test of the lambda-model. Günther M; Ruder H Biol Cybern; 2003 Aug; 89(2):89-106. PubMed ID: 12905038 [TBL] [Abstract][Full Text] [Related]
18. A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking. Jo S; Massaquoi SG Biol Cybern; 2007 Mar; 96(3):279-307. PubMed ID: 17124602 [TBL] [Abstract][Full Text] [Related]
19. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion. Nakada K; Asai T; Amemiya Y IEEE Trans Neural Netw; 2003; 14(5):1356-65. PubMed ID: 18244582 [TBL] [Abstract][Full Text] [Related]
20. Adaptive control of arterial blood pressure with a learning controller based on multilayer neural networks. Chen CT; Lin WL; Kuo TS; Wang CY IEEE Trans Biomed Eng; 1997 Jul; 44(7):601-9. PubMed ID: 9210820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]