These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22139034)

  • 61. Presence of As in the fluvial network due to AMD processes in the Riotinto mining area (SW Spain): a fuzzy logic qualitative model.
    Grande JA; Andujar JM; Aroba J; de la Torre ML
    J Hazard Mater; 2010 Apr; 176(1-3):395-401. PubMed ID: 19962823
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of arsenic and antimony contents in tissues and organs of brown trout caught from the river Presa polluted by ancient mining practices and from the river Bravona in Corsica (France): a survey study.
    Foata J; Quilichini Y; Torres J; Pereira E; Spella MM; Mattei J; Marchand B
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):581-9. PubMed ID: 19253009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Arsenic variation in two basins of Lake Dianchi.
    Wei C; Zhang N
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):605-10. PubMed ID: 22349283
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Thallium in the hydrosphere of south west England.
    Law S; Turner A
    Environ Pollut; 2011 Dec; 159(12):3484-9. PubMed ID: 21925780
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA.
    Camacho LM; Gutiérrez M; Alarcón-Herrera MT; Villalba Mde L; Deng S
    Chemosphere; 2011 Apr; 83(3):211-25. PubMed ID: 21216433
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impacts of mining activities on water and soil.
    Warhate SR; Yenkie MK; Chaudhari MD; Pokale WK
    J Environ Sci Eng; 2006 Apr; 48(2):81-90. PubMed ID: 17913182
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Arsenic speciation and mobility in surface water at Lucky Shot Gold Mine, Alaska.
    Torrance K; Keenan H; Munk L; Hagedorn B
    Environ Geochem Health; 2012 Dec; 34(6):711-23. PubMed ID: 23001470
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distributions and concentrations of thallium in surface waters of a region impacted by historical metal mining (Cornwall, UK).
    Tatsi K; Turner A
    Sci Total Environ; 2014 Mar; 473-474():139-46. PubMed ID: 24368195
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin.
    Pell A; Márquez A; López-Sánchez JF; Rubio R; Barbero M; Stegen S; Queirolo F; Díaz-Palma P
    Chemosphere; 2013 Jan; 90(2):556-64. PubMed ID: 22981629
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Geochemical behaviors of antimony in mining-affected water environment (Southwest China).
    Li L; Tu H; Zhang S; Wu L; Wu M; Tang Y; Wu P
    Environ Geochem Health; 2019 Dec; 41(6):2397-2411. PubMed ID: 30972516
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human health risks in an old gold mining area with circum-neutral drainage, central Portugal.
    Carvalho PC; Neiva AM; Silva MM; Santos AC
    Environ Geochem Health; 2017 Feb; 39(1):43-62. PubMed ID: 26932559
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal).
    Antunes IM; Albuquerque MT
    Sci Total Environ; 2013 Jan; 442():545-52. PubMed ID: 23220092
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Environmental change in a modified catchment downstream of a gold mine, Solomon Islands.
    Albert S; Kvennefors C; Jacob K; Kera J; Grinham A
    Environ Pollut; 2017 Dec; 231(Pt 1):942-953. PubMed ID: 28888940
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.
    Chang FJ; Chung CH; Chen PA; Liu CW; Coynel A; Vachaud G
    Sci Total Environ; 2014 Oct; 494-495():202-10. PubMed ID: 25046611
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The biogeochemistry of arsenic in a remote UK upland site: trends in rainfall and runoff, and comparisons with urban rivers.
    Rowland AP; Neal C; Reynolds B; Jarvie HP; Sleep D; Lawlor AJ; Neal M
    J Environ Monit; 2011 May; 13(5):1255-63. PubMed ID: 21442109
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Arsenic speciation in natural waters by cathodic stripping voltammetry.
    Gibbon-Walsh K; Salaün P; van den Berg CM
    Anal Chim Acta; 2010 Mar; 662(1):1-8. PubMed ID: 20152258
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales.
    Byrne P; Reid I; Wood PJ
    Environ Monit Assess; 2013 Mar; 185(3):2817-32. PubMed ID: 22752965
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain).
    Gomez-Gonzalez MA; Serrano S; Laborda F; Garrido F
    Sci Total Environ; 2014 Dec; 500-501():23-33. PubMed ID: 25217741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.