These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22139034)
81. Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian Pyrite Belt, Spain). Moreno-González R; Macías F; Olías M; Ruiz Cánovas C Environ Pollut; 2022 Feb; 295():118697. PubMed ID: 34929207 [TBL] [Abstract][Full Text] [Related]
82. Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain). Moreno González R; Cánovas CR; Olías M; Macías F Environ Pollut; 2020 Apr; 259():113829. PubMed ID: 31884218 [TBL] [Abstract][Full Text] [Related]
83. Mass balance of arsenic fluxes in rivers impacted by gold mining activities in Paracatu (Minas Gerais State, Brazil). Bidone E; Cesar R; Santos MC; Sierpe R; Silva-Filho EV; Kutter V; Dias da Silva LI; Castilhos Z Environ Sci Pollut Res Int; 2018 Mar; 25(9):9085-9100. PubMed ID: 29335874 [TBL] [Abstract][Full Text] [Related]
84. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage. Desoeuvre A; Casiot C; Héry M Microb Ecol; 2016 Apr; 71(3):672-85. PubMed ID: 26603631 [TBL] [Abstract][Full Text] [Related]
85. Arsenic species in drinking water wells in the USA with high arsenic concentrations. Sorg TJ; Chen AS; Wang L Water Res; 2014 Jan; 48():156-69. PubMed ID: 24094730 [TBL] [Abstract][Full Text] [Related]
86. Mutual interaction between arsenic and biofilm in a mining impacted river. Barral-Fraga L; Martiñá-Prieto D; Barral MT; Morin S; Guasch H Sci Total Environ; 2018 Sep; 636():985-998. PubMed ID: 29729516 [TBL] [Abstract][Full Text] [Related]
87. Influence of arsenic and boron on the water quality index in mining stressed catchments of Emet and Orhaneli streams (Turkey). Omwene PI; Öncel MS; Çelen M; Kobya M Environ Monit Assess; 2019 Mar; 191(4):199. PubMed ID: 30824983 [TBL] [Abstract][Full Text] [Related]
88. Impact of redox conditions on arsenic mobilization from tailings in a wetland with neutral drainage. Beauchemin S; Kwong YT Environ Sci Technol; 2006 Oct; 40(20):6297-303. PubMed ID: 17120556 [TBL] [Abstract][Full Text] [Related]
89. Preservation procedures for arsenic speciation in a stream affected by acid mine drainage in southwestern Spain. Sánchez-Rodas D; Oliveira V; Sarmiento AM; Gómez-Ariza JL; Nieto JM Anal Bioanal Chem; 2006 Apr; 384(7-8):1594-9. PubMed ID: 16477419 [TBL] [Abstract][Full Text] [Related]
90. Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea. Ahn JS; Park YS; Kim JY; Kim KW Environ Geochem Health; 2005 Apr; 27(2):147-57. PubMed ID: 16003582 [TBL] [Abstract][Full Text] [Related]
91. Iron oxide - clay composite vectors on long-distance transport of arsenic and toxic metals in mining-affected areas. Gomez-Gonzalez MA; Villalobos M; Marco JF; Garcia-Guinea J; Bolea E; Laborda F; Garrido F Chemosphere; 2018 Apr; 197():759-767. PubMed ID: 29407840 [TBL] [Abstract][Full Text] [Related]
92. Some naturally occurring radionuclides (NORM) in a river affected by acid mining drainages. Manjón G; Mantero J; Vioque I; Galván J; Díaz-Francés I; García-Tenorio R Chemosphere; 2019 May; 223():536-543. PubMed ID: 30784760 [TBL] [Abstract][Full Text] [Related]
93. Nutrient distribution and structure affect the behavior and speciation of arsenic in coastal waters: A case study in southwestern coast of the Laizhou Bay, China. Zhang J; Zhang M; Zhang S; Xu Q; Liu X; Zhang Z Mar Pollut Bull; 2019 Sep; 146():377-386. PubMed ID: 31426170 [TBL] [Abstract][Full Text] [Related]
94. Sediment arsenic hotspots in an abandoned tailings storage facility, Gold Ridge Mine, Solomon Islands. Jacob-Tatapu KJ; Albert S; Grinham A Chemosphere; 2021 Apr; 269():128756. PubMed ID: 33153844 [TBL] [Abstract][Full Text] [Related]
95. (Micro)spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes. Kim CS; Chi C; Miller SR; Rosales RA; Sugihara ES; Akau J; Rytuba JJ; Webb SM Environ Sci Technol; 2013 Aug; 47(15):8164-71. PubMed ID: 23889478 [TBL] [Abstract][Full Text] [Related]
96. An assessment of sampling, preservation, and analytical procedures for arsenic speciation in potentially contaminated waters. Kim YT; Yoon H; Yoon C; Woo NC Environ Geochem Health; 2007 Aug; 29(4):337-46. PubMed ID: 17505895 [TBL] [Abstract][Full Text] [Related]
97. Stream water chemistry in the arsenic-contaminated Baccu Locci mine watershed (Sardinia, Italy) after remediation. Ardau C; Podda F; Da Pelo S; Frau F Environ Sci Pollut Res Int; 2013 Nov; 20(11):7550-9. PubMed ID: 23666684 [TBL] [Abstract][Full Text] [Related]
98. Spatial and seasonal variation of arsenic speciation in Pantanal soda lakes. Hechavarría-Hernández A; Viana JLM; Barbiero L; Rezende-Filho AT; Montes CR; Melfi AJ; Fostier AH Chemosphere; 2023 Jul; 329():138672. PubMed ID: 37060957 [TBL] [Abstract][Full Text] [Related]
99. Guilty by association: Assessment of environmental loadings on arsenic distribution in two Pacific Island rivers. Tupiti W; Jones CE; Chandra S Sci Total Environ; 2021 Nov; 796():148969. PubMed ID: 34328873 [TBL] [Abstract][Full Text] [Related]
100. Comment on "predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoules mine (Southern France)". Smeaton CM; Weisener CG; Fryer BJ Environ Sci Technol; 2012 Feb; 46(4):2473-4; author reply 2475-6. PubMed ID: 22243428 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]