These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22139476)

  • 1. Some findings relevant to the mechanistic interpretation in the case of predictive models for carcinogenicity based on the counter propagation artificial neural network.
    Fjodorova N; Novič M
    J Comput Aided Mol Des; 2011 Dec; 25(12):1159-69. PubMed ID: 22139476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of QSAR and SAR methods for the mechanistic interpretation of predictive models for carcinogenicity.
    Fjodorova N; Novič M
    Comput Struct Biotechnol J; 2012; 1():e201207003. PubMed ID: 24688639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of criteria used to access carcinogenicity in CPANN QSAR models versus the knowledge-based expert system Toxtree.
    Fjodorova N; Novič M
    SAR QSAR Environ Res; 2014; 25(6):423-41. PubMed ID: 24716754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the applicability domain in the case of classification predictive models for carcinogenicity based on the counter propagation artificial neural network.
    Fjodorova N; Novič M; Roncaglioni A; Benfenati E
    J Comput Aided Mol Des; 2011 Dec; 25(12):1147-58. PubMed ID: 22139475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses.
    Fjodorova N; Vračko M; Tušar M; Jezierska A; Novič M; Kühne R; Schüürmann G
    Mol Divers; 2010 Aug; 14(3):581-94. PubMed ID: 19685274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counter propagation artificial neural network categorical models for prediction of carcinogenicity for non-congeneric chemicals.
    Fjodorova N; Vracko M; Jezierska A; Novic M
    SAR QSAR Environ Res; 2010 Jan; 21(1):57-75. PubMed ID: 20373214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural alerts for estimating the carcinogenicity of pesticides and biocides.
    Devillers J; Mombelli E; Samsera R
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):89-106. PubMed ID: 21391143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Methods for Carcinogenicity Assessment.
    Golbamaki A; Benfenati E
    Methods Mol Biol; 2016; 1425():107-19. PubMed ID: 27311464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive carcinogenicity: a model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network.
    Gini G; Lorenzini M; Benfenati E; Grasso P; Bruschi M
    J Chem Inf Comput Sci; 1999; 39(6):1076-80. PubMed ID: 10614025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology.
    Benigni R; Bossa C
    Mutat Res; 2008; 659(3):248-61. PubMed ID: 18621573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Methods for Carcinogenicity Assessment.
    Golbamaki A; Benfenati E; Roncaglioni A
    Methods Mol Biol; 2022; 2425():201-215. PubMed ID: 35188634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices.
    Contrera JF; Matthews EJ; Daniel Benz R
    Regul Toxicol Pharmacol; 2003 Dec; 38(3):243-59. PubMed ID: 14623477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals.
    Mombelli E; Devillers J
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):731-52. PubMed ID: 21120759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment.
    Benigni R; Passerini L
    Mutat Res; 2002 Jul; 511(3):191-206. PubMed ID: 12088717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds: species: rat; sex: male; route of administration: water.
    Helguera AM; Cordeiro MN; Pérez MA; Combes RD; González MP
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):197-207. PubMed ID: 18533217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. II. Using oral slope factor as a measure of carcinogenic potency.
    Wang NC; Venkatapathy R; Bruce RM; Moudgal C
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):215-26. PubMed ID: 20951756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of rodent carcinogenicity for 44 chemicals: results.
    Ashby J; Tennant RW
    Mutagenesis; 1994 Jan; 9(1):7-15. PubMed ID: 8208133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model.
    Franke R; Gruska A; Giuliani A; Benigni R
    Carcinogenesis; 2001 Sep; 22(9):1561-71. PubMed ID: 11532881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR modelling of carcinogenicity by balance of correlations.
    Toropov AA; Toropova AP; Benfenati E; Manganaro A
    Mol Divers; 2009 Aug; 13(3):367-73. PubMed ID: 19190994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.