BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22139577)

  • 1. Germ cell-specific DNA methylation and genome diploidization in primitive vertebrates.
    Ma S; Huang W; Zhang L; Zhao S; Tong Y; Liu Z; Sun L; Chen H; Luo C
    Epigenetics; 2011 Dec; 6(12):1471-80. PubMed ID: 22139577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development.
    Davis TL; Yang GJ; McCarrey JR; Bartolomei MS
    Hum Mol Genet; 2000 Nov; 9(19):2885-94. PubMed ID: 11092765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of differentially methylated regions in 3 bovine imprinted genes: a model for studying human germ-cell and embryo development.
    Hansmann T; Heinzmann J; Wrenzycki C; Zechner U; Niemann H; Haaf T
    Cytogenet Genome Res; 2011; 132(4):239-47. PubMed ID: 21160170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo DNA methylation at the CpG island of the zebrafish no tail gene.
    Yamakoshi K; Shimoda N
    Genesis; 2003 Dec; 37(4):195-202. PubMed ID: 14666513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression.
    Bhogal B; Arnaudo A; Dymkowski A; Best A; Davis TL
    Genomics; 2004 Dec; 84(6):961-70. PubMed ID: 15533713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylation dynamics of imprinted genes in mouse germ cells.
    Lucifero D; Mertineit C; Clarke HJ; Bestor TH; Trasler JM
    Genomics; 2002 Apr; 79(4):530-8. PubMed ID: 11944985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos.
    Geuns E; De Rycke M; Van Steirteghem A; Liebaers I
    Hum Mol Genet; 2003 Nov; 12(22):2873-9. PubMed ID: 14500540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation.
    Remnant EJ; Ashe A; Young PE; Buchmann G; Beekman M; Allsopp MH; Suter CM; Drewell RA; Oldroyd BP
    BMC Genomics; 2016 Mar; 17():226. PubMed ID: 26969617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a gene required for de novo DNA methylation of the zebrafish no tail gene.
    Shimoda N; Yamakoshi K; Miyake A; Takeda H
    Dev Dyn; 2005 Aug; 233(4):1509-16. PubMed ID: 15937923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal Vsx1 plays an essential role in regulating prechordal mesendoderm and forebrain formation in zebrafish.
    Xu X; He Y; Sun L; Ma S; Luo C
    Dev Biol; 2014 Oct; 394(2):264-76. PubMed ID: 25150888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisulfite genomic sequencing-derived methylation profile of the xist gene throughout early mouse development.
    McDonald LE; Paterson CA; Kay GF
    Genomics; 1998 Dec; 54(3):379-86. PubMed ID: 9878240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes.
    Liu JH; Zhu JQ; Liang XW; Yin S; Ola SI; Hou Y; Chen DY; Schatten H; Sun QY
    Genomics; 2008 Feb; 91(2):121-8. PubMed ID: 18036775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic modification for bimaternal embryo development.
    Kono T
    Reprod Fertil Dev; 2009; 21(1):31-6. PubMed ID: 19152743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The parental non-equivalence of imprinting control regions during mammalian development and evolution.
    Schulz R; Proudhon C; Bestor TH; Woodfine K; Lin CS; Lin SP; Prissette M; Oakey RJ; Bourc'his D
    PLoS Genet; 2010 Nov; 6(11):e1001214. PubMed ID: 21124941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development.
    Bourc'his D; Proudhon C
    Mol Cell Endocrinol; 2008 Jan; 282(1-2):87-94. PubMed ID: 18178305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Epigenetic regulation of genomic imprinting in germline cells and preimplantation embryos].
    Zhu YR; Zhang ML; Zhai ZC; Zhao YJ; Ma X
    Yi Chuan; 2016 Feb; 38(2):103-8. PubMed ID: 26907773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense noncoding RNA promoter regulates the timing of de novo methylation of an imprinting control region.
    Guseva N; Mondal T; Kanduri C
    Dev Biol; 2012 Jan; 361(2):403-11. PubMed ID: 22119056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of NF-kappa B/I kappa B proteins in zebra fish and their involvement in notochord development.
    Correa RG; Tergaonkar V; Ng JK; Dubova I; Izpisua-Belmonte JC; Verma IM
    Mol Cell Biol; 2004 Jun; 24(12):5257-68. PubMed ID: 15169890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation.
    Tanaka M; Puchyr M; Gertsenstein M; Harpal K; Jaenisch R; Rossant J; Nagy A
    Mech Dev; 1999 Sep; 87(1-2):129-42. PubMed ID: 10495277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic structure and parent-of-origin-specific methylation of Peg1.
    Lefebvre L; Viville S; Barton SC; Ishino F; Surani MA
    Hum Mol Genet; 1997 Oct; 6(11):1907-15. PubMed ID: 9302270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.