BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22139586)

  • 1. The cytotoxic effect of diphtheria toxin on the actin cytoskeleton.
    Varol B; Bektaş M; Nurten R; Bermek E
    Cell Mol Biol Lett; 2012 Mar; 17(1):49-61. PubMed ID: 22139586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between actin and FA fragment of diphtheria toxin.
    Unlü A; Bektaş M; Sener S; Nurten R
    Mol Biol Rep; 2013 Apr; 40(4):3135-45. PubMed ID: 23271118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of diphtheria toxin (fragment A) with actin.
    Bektaş M; Varol B; Nurten R; Bermek E
    Cell Biochem Funct; 2009 Oct; 27(7):430-9. PubMed ID: 19711484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On diphtheria toxin fragment A release into the cytosol--cytochalasin D effect and involvement of actin filaments and eukaryotic elongation factor 2.
    Bektaş M; Hacıosmanoğlu E; Ozerman B; Varol B; Nurten R; Bermek E
    Int J Biochem Cell Biol; 2011 Sep; 43(9):1365-72. PubMed ID: 21664484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a cloned temperature-sensitive construct of the diphtheria toxin A domain.
    Lee JW; Cho E; Aghaian E; Aghaian E; Der J; Wisnieski BJ
    Biochemistry; 2005 Feb; 44(7):2555-65. PubMed ID: 15709768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diphtheria toxin NAD affinity and ADP ribosyltransferase activity are reduced at tryptophan 153 substitutions for alanine or phenylalanine.
    Zdanovskaia MV; Zdanovsky AG; Yankovsky NK
    Res Microbiol; 2000 Sep; 151(7):557-62. PubMed ID: 11037133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphtheria toxin and its ADP-ribosyltransferase-defective homologue CRM197 possess deoxyribonuclease activity.
    Bruce C; Baldwin RL; Lessnick SL; Wisnieski BJ
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):2995-8. PubMed ID: 2109323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin--an inhibitor of eukaryotic elongation factor activities.
    Bektaş M; Günçer B; Güven C; Nurten R; Bermek E
    Biochem Biophys Res Commun; 2004 May; 317(4):1061-6. PubMed ID: 15094376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin.
    Belyy A; Lindemann F; Roderer D; Funk J; Bardiaux B; Protze J; Bieling P; Oschkinat H; Raunser S
    Nat Commun; 2022 Jul; 13(1):4202. PubMed ID: 35858890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Biochemistry; 1996 Jan; 35(4):1137-49. PubMed ID: 8573568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions.
    Bektaş M; Nurten R; Ergen K; Bermek E
    Cell Biochem Funct; 2006; 24(4):369-80. PubMed ID: 16142694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens.
    Visschedyk DD; Perieteanu AA; Turgeon ZJ; Fieldhouse RJ; Dawson JF; Merrill AR
    J Biol Chem; 2010 Apr; 285(18):13525-34. PubMed ID: 20181945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin.
    Barth H; Aktories K
    Eur J Cell Biol; 2011 Nov; 90(11):944-50. PubMed ID: 21247657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of diphtheria toxin with adenylyl-(3',5')-uridine 3'-monophosphate. II. The NAD-binding site and determinants of dinucleotide affinity.
    Collins CM; Collier RJ
    J Biol Chem; 1984 Dec; 259(24):15159-62. PubMed ID: 6511789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ELISA method to estimate the mono ADP-ribosyltransferase activities: e.g in pertussis toxin and vaccines.
    Asokanathan C; Tierney S; Ball CR; Buckle G; Day A; Tanley S; Bristow A; Markey K; Xing D; Yuen CT
    Anal Biochem; 2018 Jan; 540-541():15-19. PubMed ID: 29108883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of oxidative stress on in vivo ADP-ribosylation of eukaryotic elongation factor 2.
    Bektaş M; Akçakaya H; Aroymak A; Nurten R; Bermek E
    Int J Biochem Cell Biol; 2005 Jan; 37(1):91-9. PubMed ID: 15381153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an actin-targeting ADP-ribosyltransferase from Aeromonas hydrophila.
    Shniffer A; Visschedyk DD; Ravulapalli R; Suarez G; Turgeon ZJ; Petrie AA; Chopra AK; Merrill AR
    J Biol Chem; 2012 Oct; 287(44):37030-41. PubMed ID: 22969084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.