BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22139755)

  • 41. An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels.
    Boudou T; Ohayon J; Picart C; Tracqui P
    Biorheology; 2006; 43(6):721-8. PubMed ID: 17148855
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulation of high tensile Poisson's ratios of articular cartilage with a finite element fibril-reinforced hyperelastic model.
    García JJ
    Med Eng Phys; 2008 Jun; 30(5):590-8. PubMed ID: 17690001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.
    Bawolin NK; Li MG; Chen XB; Zhang WJ
    J Biomech Eng; 2010 Nov; 132(11):111001. PubMed ID: 21034142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.
    Gleadall A; Pan J; Kruft MA
    J Mech Behav Biomed Mater; 2015 Nov; 51():237-47. PubMed ID: 26275486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The apparent increase of the Young's modulus in thin cement layers.
    De Jager N; Pallav P; Feilzer AJ
    Dent Mater; 2004 Jun; 20(5):457-62. PubMed ID: 15081552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules.
    Tang M; Li T; Pickering E; Gandhi NS; Burrage K; Gu Y
    J Mech Behav Biomed Mater; 2018 Oct; 86():359-367. PubMed ID: 30015207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility.
    Pietrzak G; Curnier A; Botsis J; Scherrer S; Wiskott A; Belser U
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):91-100. PubMed ID: 12186719
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Young's modulus of collagen at slow displacement rates.
    Lopez-Garcia MD; Beebe DJ; Crone WC
    Biomed Mater Eng; 2010; 20(6):361-9. PubMed ID: 21263182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New three-dimensional model based on finite element method of bone nanostructure: single TC molecule scale level.
    Kraiem T; Barkaoui A; Chafra M; Hambli R; Tavares JM
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):617-625. PubMed ID: 28349765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poisson's ratio of bovine meniscus determined combining unconfined and confined compression.
    Danso EK; Julkunen P; Korhonen RK
    J Biomech; 2018 Aug; 77():233-237. PubMed ID: 30055840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesoscopic model for mechanical characterization of biological protein materials.
    Yoon G; Park HJ; Na S; Eom K
    J Comput Chem; 2009 Apr; 30(6):873-80. PubMed ID: 18780341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finite element modeling of the 3D otolith structure.
    Kondrachuk AV
    J Vestib Res; 2001; 11(1):13-32. PubMed ID: 11673675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.
    Libonati F; Nair AK; Vergani L; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Apr; 20():184-91. PubMed ID: 23500480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An extended modeling of the micropipette aspiration experiment for the characterization of the Young's modulus and Poisson's ratio of adherent thin biological samples: numerical and experimental studies.
    Boudou T; Ohayon J; Arntz Y; Finet G; Picart C; Tracqui P
    J Biomech; 2006; 39(9):1677-85. PubMed ID: 15978599
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical behavior of human embryonic stem cell pellet under unconfined compression.
    Ma G; Petersen E; Leong KW; Liao K
    Biomech Model Mechanobiol; 2012 May; 11(5):703-14. PubMed ID: 21858691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect.
    Choi AP; Zheng YP
    Med Biol Eng Comput; 2005 Mar; 43(2):258-64. PubMed ID: 15865137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Three-dimensional finite element stress analysis of supporting bone of mandibular posterior fixed bridge. Part III. Comparative analysis with stress of the cortical bone beneath different pontics of fixed bridge].
    Tang L; Chen G
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Feb; 18(1):58-60. PubMed ID: 12539367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of the elasticity parameters of brain tissue with combined simulation and registration.
    Soza G; Grosso R; Nimsky C; Hastreiter P; Fahlbusch R; Greiner G
    Int J Med Robot; 2005 Sep; 1(3):87-95. PubMed ID: 17518395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.