These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22140012)

  • 1. General bottom-up construction of spherical particles by pulsed laser irradiation of colloidal nanoparticles: a case study on CuO.
    Wang H; Kawaguchi K; Pyatenko A; Li X; Swiatkowska-Warkocka Z; Katou Y; Koshizaki N
    Chemistry; 2012 Jan; 18(1):163-9. PubMed ID: 22140012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Au-based porous magnetic spheres by selective laser heating in liquid.
    Swiatkowska-Warkocka Z; Kawaguchi K; Shimizu Y; Pyatenko A; Wang H; Koshizaki N
    Langmuir; 2012 Mar; 28(11):4903-7. PubMed ID: 22364541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser fabrication and spectroscopy of organic nanoparticles.
    Asahi T; Sugiyama T; Masuhara H
    Acc Chem Res; 2008 Dec; 41(12):1790-8. PubMed ID: 18937507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetragonal zirconia spheres fabricated by carbon-assisted selective laser heating in a liquid medium.
    Li X; Shimizu Y; Pyatenko A; Wang H; Koshizaki N
    Nanotechnology; 2012 Mar; 23(11):115602. PubMed ID: 22370443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of crystalline silicon spheres by selective laser heating in liquid medium.
    Li X; Pyatenko A; Shimizu Y; Wang H; Koga K; Koshizaki N
    Langmuir; 2011 Apr; 27(8):5076-80. PubMed ID: 21413711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres.
    Chang Y; Teo JJ; Zeng HC
    Langmuir; 2005 Feb; 21(3):1074-9. PubMed ID: 15667192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells.
    Wang H; Miyauchi M; Ishikawa Y; Pyatenko A; Koshizaki N; Li Y; Li L; Li X; Bando Y; Golberg D
    J Am Chem Soc; 2011 Nov; 133(47):19102-9. PubMed ID: 22017378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-Induced "Regeneration" of Colloidal Particles: The Effects of Thermal Inertia on the Chemical Reactivity of Laser-Heated Particles.
    McGrath TE; Beveridge AC; Diebold GJ
    Angew Chem Int Ed Engl; 1999 Nov; 38(22):3353-3356. PubMed ID: 10602192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sol-gel-derived spheres for spherical microcavity.
    Shibata S; Yano T; Segawa H
    Acc Chem Res; 2007 Sep; 40(9):913-20. PubMed ID: 17683158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General and simple route to micro/nanostructured hollow-sphere arrays based on electrophoresis of colloids induced by laser ablation in liquid.
    Yang S; Cai W; Yang J; Zeng H
    Langmuir; 2009 Jul; 25(14):8287-91. PubMed ID: 19425560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid.
    Liu P; Cui H; Wang CX; Yang GW
    Phys Chem Chem Phys; 2010 Apr; 12(16):3942-52. PubMed ID: 20379485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation exchange: a simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties.
    Camargo PH; Lee YH; Jeong U; Zou Z; Xia Y
    Langmuir; 2007 Mar; 23(6):2985-92. PubMed ID: 17261053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of spherical colloidal crystals using electrospray.
    Hong SH; Moon JH; Lim JM; Kim SH; Yang SM
    Langmuir; 2005 Nov; 21(23):10416-21. PubMed ID: 16262301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agglomeration of alumina submicronparticles by silica nanoparticles: application to processing spheres by colloidal route.
    Garcia-Perez P; Pagnoux C; Pringuet A; Videcoq A; Baumard JF
    J Colloid Interface Sci; 2007 Sep; 313(2):527-36. PubMed ID: 17524415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretching effect of linearly polarized Ar+ laser single-beam on azo polymer colloidal spheres.
    Li Y; He Y; Tong X; Wang X
    Langmuir; 2006 Feb; 22(5):2288-91. PubMed ID: 16489819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic azo polymer spheres, colloidal monolayers, and photoinduced chromophore orientation.
    Li Y; Deng Y; He Y; Tong X; Wang X
    Langmuir; 2005 Jul; 21(14):6567-71. PubMed ID: 15982068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.
    Zhang X; Zhang J; Zhu D; Li X; Zhang X; Wang T; Yang B
    Langmuir; 2010 Dec; 26(23):17936-42. PubMed ID: 20973566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur.
    Ninomiya T; Miyamoto Y; Ito T; Yamashita A; Wakita M; Nishisaka T
    J Bone Miner Metab; 2003; 21(2):67-73. PubMed ID: 12601569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres.
    Li XH; Li JX; Li GD; Liu DP; Chen JS
    Chemistry; 2007; 13(31):8754-61. PubMed ID: 17676576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.