These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22140012)

  • 21. Fragmentation mechanism of the generation of colloidal copper(i) iodide nanoparticles by pulsed laser irradiation in liquids.
    Schaumberg CA; Wollgarten M; Rademann K
    Phys Chem Chem Phys; 2015 Jul; 17(27):17934-8. PubMed ID: 26094747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agglomeration of alumina submicronparticles by silica nanoparticles: application to processing spheres by colloidal route.
    Garcia-Perez P; Pagnoux C; Pringuet A; Videcoq A; Baumard JF
    J Colloid Interface Sci; 2007 Sep; 313(2):527-36. PubMed ID: 17524415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction Mechanism of Transition Metal Oxide Particles in Thermally Induced Nanobubbles during Pulsed Laser Melting in Ethanol.
    Suehara K; Takai R; Ishikawa Y; Koshizaki N; Omura K; Nagata H; Yamauchi Y
    Chemphyschem; 2021 Apr; 22(7):675-683. PubMed ID: 33496376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretching effect of linearly polarized Ar+ laser single-beam on azo polymer colloidal spheres.
    Li Y; He Y; Tong X; Wang X
    Langmuir; 2006 Feb; 22(5):2288-91. PubMed ID: 16489819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of Ag-Ag(2)O complex nanostructures by excimer laser ablation of Ag in water.
    Yan Z; Bao R; Chrisey DB
    Phys Chem Chem Phys; 2013 Mar; 15(9):3052-6. PubMed ID: 23093092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amphiphilic azo polymer spheres, colloidal monolayers, and photoinduced chromophore orientation.
    Li Y; Deng Y; He Y; Tong X; Wang X
    Langmuir; 2005 Jul; 21(14):6567-71. PubMed ID: 15982068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.
    Zhang X; Zhang J; Zhu D; Li X; Zhang X; Wang T; Yang B
    Langmuir; 2010 Dec; 26(23):17936-42. PubMed ID: 20973566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur.
    Ninomiya T; Miyamoto Y; Ito T; Yamashita A; Wakita M; Nishisaka T
    J Bone Miner Metab; 2003; 21(2):67-73. PubMed ID: 12601569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of high-quality colloidal mask for nanosphere lithography by a combination of air/water interface self-assembly and solvent vapor annealing.
    Yu J; Geng C; Zheng L; Ma Z; Tan T; Wang X; Yan Q; Shen D
    Langmuir; 2012 Aug; 28(34):12681-9. PubMed ID: 22894745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Guided Slow Continuous Suspension Film Flow for Mass Production of Submicrometer Spherical Particles by Pulsed Laser Melting in Liquid.
    Ishikawa Y; Koshizaki N
    Sci Rep; 2018 Sep; 8(1):14208. PubMed ID: 30242274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres.
    Li XH; Li JX; Li GD; Liu DP; Chen JS
    Chemistry; 2007; 13(31):8754-61. PubMed ID: 17676576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of electro-conductive titanium oxide fine particles by pulsed UV laser irradiation.
    Ioroi T; Kageyama H; Akita T; Yasuda K
    Phys Chem Chem Phys; 2010 Jul; 12(27):7529-35. PubMed ID: 20532350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 May; 109(19):9404-10. PubMed ID: 16852127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inclusion of supported gold nanoparticles into their semiconductor support.
    Lau M; Ziefuss A; Komossa T; Barcikowski S
    Phys Chem Chem Phys; 2015 Nov; 17(43):29311-8. PubMed ID: 26467473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of highly ordered nanostructures by drying micrometer colloidal droplets.
    Lee SY; Gradon L; Janeczko S; Iskandar F; Okuyama K
    ACS Nano; 2010 Aug; 4(8):4717-24. PubMed ID: 20731450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microwave-assisted self-organization of colloidal particles in confining aqueous droplets.
    Kim SH; Lee SY; Yi GR; Pine DJ; Yang SM
    J Am Chem Soc; 2006 Aug; 128(33):10897-904. PubMed ID: 16910685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.
    Pascu O; Caicedo JM; Fontcuberta J; Herranz G; Roig A
    Langmuir; 2010 Aug; 26(15):12548-52. PubMed ID: 20593788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting.
    Yadavali S; Sandireddy VP; Kalyanaraman R
    Nanotechnology; 2016 May; 27(19):195602. PubMed ID: 27041091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composites of metal nanoparticles and TiO2 immobilized in spherical polyelectrolyte brushes.
    Lu Y; Lunkenbein T; Preussner J; Proch S; Breu J; Kempe R; Ballauff M
    Langmuir; 2010 Mar; 26(6):4176-83. PubMed ID: 20158222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.