These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 22140085)

  • 21. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.
    Hu JJ; Chao WC; Lee PY; Huang CH
    J Mech Behav Biomed Mater; 2012 Sep; 13():140-55. PubMed ID: 22854316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers.
    Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y
    J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of electrospun poly(D,L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption.
    Leong MF; Chian KS; Mhaisalkar PS; Ong WF; Ratner BD
    J Biomed Mater Res A; 2009 Jun; 89(4):1040-8. PubMed ID: 18478557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: Mechanical properties and cytotoxicity.
    Yeganegi M; Kandel RA; Santerre JP
    Acta Biomater; 2010 Oct; 6(10):3847-55. PubMed ID: 20466079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering.
    He X; Xiao Q; Lu C; Wang Y; Zhang X; Zhao J; Zhang W; Zhang X; Deng Y
    Biomacromolecules; 2014 Feb; 15(2):618-27. PubMed ID: 24405043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering.
    Kim YH; Min YK; Lee BT
    J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.
    Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S
    Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Ann Biomed Eng; 2012 Oct; 40(10):2098-110. PubMed ID: 22618802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.
    Reddy CS; Venugopal JR; Ramakrishna S; Zussman E
    J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK
    Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Braided nanofibrous scaffold for tendon and ligament tissue engineering.
    Barber JG; Handorf AM; Allee TJ; Li WJ
    Tissue Eng Part A; 2013 Jun; 19(11-12):1265-74. PubMed ID: 21895485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.
    Fee T; Surianarayanan S; Downs C; Zhou Y; Berry J
    PLoS One; 2016; 11(5):e0154806. PubMed ID: 27196306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.
    Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS
    Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography.
    Liu Z; Yu N; Holz FG; Yang F; Stanzel BV
    Biomaterials; 2014 Mar; 35(9):2837-50. PubMed ID: 24439407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency.
    Wang J; Yuan B; Han RPS
    J Mech Behav Biomed Mater; 2018 Jan; 77():314-320. PubMed ID: 28961518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Keratin-chitosan membranes as scaffold for tissue engineering of human cornea.
    Vázquez N; Chacón M; Meana Á; Menéndez-Menéndez Y; Ferrero-Gutierrez A; Cereijo-Martín D; Naveiras M; Merayo-Lloves J
    Histol Histopathol; 2015 Jul; 30(7):813-21. PubMed ID: 25587895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering.
    Ku SH; Park CB
    Biomaterials; 2010 Dec; 31(36):9431-7. PubMed ID: 20880578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering.
    Prabhakaran MP; Vatankhah E; Ramakrishna S
    Biotechnol Bioeng; 2013 Oct; 110(10):2775-84. PubMed ID: 23613155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes.
    Pang K; Du L; Wu X
    Biomaterials; 2010 Oct; 31(28):7257-65. PubMed ID: 20598368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.