These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 22140357)
1. Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. Rafati H; Parra M; Hakre S; Moshkin Y; Verdin E; Mahmoudi T PLoS Biol; 2011 Nov; 9(11):e1001206. PubMed ID: 22140357 [TBL] [Abstract][Full Text] [Related]
2. Transcription through the HIV-1 nucleosomes: effects of the PBAF complex in Tat activated transcription. Easley R; Carpio L; Dannenberg L; Choi S; Alani D; Van Duyne R; Guendel I; Klase Z; Agbottah E; Kehn-Hall K; Kashanchi F Virology; 2010 Sep; 405(2):322-33. PubMed ID: 20599239 [TBL] [Abstract][Full Text] [Related]
3. The Short Isoform of BRD4 Promotes HIV-1 Latency by Engaging Repressive SWI/SNF Chromatin-Remodeling Complexes. Conrad RJ; Fozouni P; Thomas S; Sy H; Zhang Q; Zhou MM; Ott M Mol Cell; 2017 Sep; 67(6):1001-1012.e6. PubMed ID: 28844864 [TBL] [Abstract][Full Text] [Related]
4. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Agbottah E; Deng L; Dannenberg LO; Pumfery A; Kashanchi F Retrovirology; 2006 Aug; 3():48. PubMed ID: 16893449 [TBL] [Abstract][Full Text] [Related]
5. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal. Stoszko M; De Crignis E; Rokx C; Khalid MM; Lungu C; Palstra RJ; Kan TW; Boucher C; Verbon A; Dykhuizen EC; Mahmoudi T EBioMedicine; 2016 Jan; 3():108-121. PubMed ID: 26870822 [TBL] [Abstract][Full Text] [Related]
6. Novel Interactions between the Human T-Cell Leukemia Virus Type 1 Antisense Protein HBZ and the SWI/SNF Chromatin Remodeling Family: Implications for Viral Life Cycle. Alasiri A; Abboud Guerr J; Hall WW; Sheehy N J Virol; 2019 Aug; 93(16):. PubMed ID: 31142665 [TBL] [Abstract][Full Text] [Related]
7. Varying modulation of HIV-1 LTR activity by Baf complexes. Van Duyne R; Guendel I; Narayanan A; Gregg E; Shafagati N; Tyagi M; Easley R; Klase Z; Nekhai S; Kehn-Hall K; Kashanchi F J Mol Biol; 2011 Aug; 411(3):581-96. PubMed ID: 21699904 [TBL] [Abstract][Full Text] [Related]
8. The BAF complex and HIV latency. Mahmoudi T Transcription; 2012; 3(4):171-6. PubMed ID: 22771990 [TBL] [Abstract][Full Text] [Related]
9. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. He G; Margolis DM Mol Cell Biol; 2002 May; 22(9):2965-73. PubMed ID: 11940654 [TBL] [Abstract][Full Text] [Related]
10. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. Williams SA; Chen LF; Kwon H; Ruiz-Jarabo CM; Verdin E; Greene WC EMBO J; 2006 Jan; 25(1):139-49. PubMed ID: 16319923 [TBL] [Abstract][Full Text] [Related]
11. Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Henderson A; Holloway A; Reeves R; Tremethick DJ Mol Cell Biol; 2004 Jan; 24(1):389-97. PubMed ID: 14673171 [TBL] [Abstract][Full Text] [Related]
12. Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. Tréand C; du Chéné I; Brès V; Kiernan R; Benarous R; Benkirane M; Emiliani S EMBO J; 2006 Apr; 25(8):1690-9. PubMed ID: 16601680 [TBL] [Abstract][Full Text] [Related]
13. Factors controlling chromatin organization and nucleosome positioning for establishment and maintenance of HIV latency. Sadowski I; Lourenco P; Malcolm T Curr HIV Res; 2008 Jun; 6(4):286-95. PubMed ID: 18691027 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770 [TBL] [Abstract][Full Text] [Related]
15. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Li C; Mousseau G; Valente ST Epigenetics Chromatin; 2019 Apr; 12(1):23. PubMed ID: 30992052 [TBL] [Abstract][Full Text] [Related]
16. SNFing HIV transcription. Bukrinsky M Retrovirology; 2006 Aug; 3():49. PubMed ID: 16899112 [TBL] [Abstract][Full Text] [Related]
17. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. Mahmoudi T; Parra M; Vries RG; Kauder SE; Verrijzer CP; Ott M; Verdin E J Biol Chem; 2006 Jul; 281(29):19960-8. PubMed ID: 16687403 [TBL] [Abstract][Full Text] [Related]
18. A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat. Chakraborty S; Kabi M; Ranga U J Virol; 2020 Sep; 94(19):. PubMed ID: 32669338 [TBL] [Abstract][Full Text] [Related]
19. Activator control of nucleosome occupancy in activation and repression of transcription. Bryant GO; Prabhu V; Floer M; Wang X; Spagna D; Schreiber D; Ptashne M PLoS Biol; 2008 Dec; 6(12):2928-39. PubMed ID: 19108605 [TBL] [Abstract][Full Text] [Related]
20. Chromatin-associated regulation of HIV-1 transcription: implications for the development of therapeutic strategies. Quivy V; De Walque S; Van Lint C Subcell Biochem; 2007; 41():371-96. PubMed ID: 17484137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]