BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22140459)

  • 1. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.
    Kitamura K; Fujiyoshi K; Yamane J; Toyota F; Hikishima K; Nomura T; Funakoshi H; Nakamura T; Aoki M; Toyama Y; Okano H; Nakamura M
    PLoS One; 2011; 6(11):e27706. PubMed ID: 22140459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment.
    Kitamura K; Nagoshi N; Tsuji O; Matsumoto M; Okano H; Nakamura M
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30823442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury.
    Wang X; Zhou T; Maynard GD; Terse PS; Cafferty WB; Kocsis JD; Strittmatter SM
    Brain; 2020 Jun; 143(6):1697-1713. PubMed ID: 32375169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury.
    Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM
    Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen-Binding Hepatocyte Growth Factor (HGF) alone or with a Gelatin- furfurylamine Hydrogel Enhances Functional Recovery in Mice after Spinal Cord Injury.
    Yamane K; Mazaki T; Shiozaki Y; Yoshida A; Shinohara K; Nakamura M; Yoshida Y; Zhou D; Kitajima T; Tanaka M; Ito Y; Ozaki T; Matsukawa A
    Sci Rep; 2018 Jan; 8(1):917. PubMed ID: 29343699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury.
    Liu ZH; Yip PK; Adams L; Davies M; Lee JW; Michael GJ; Priestley JV; Michael-Titus AT
    J Neurosci; 2015 Sep; 35(37):12733-52. PubMed ID: 26377463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function.
    Gris D; Marsh DR; Oatway MA; Chen Y; Hamilton EF; Dekaban GA; Weaver LC
    J Neurosci; 2004 Apr; 24(16):4043-51. PubMed ID: 15102919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano PGE1 promoted the recovery from spinal cord injury-induced motor dysfunction through its accumulation and sustained release.
    Takenaga M; Ishihara T; Ohta Y; Tokura Y; Hamaguchi A; Igarashi R; Mizushima T
    J Control Release; 2010 Dec; 148(2):249-54. PubMed ID: 20709122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal Optogenetic Motor Mapping Revealed Structural and Functional Impairments and Enhanced Corticorubral Projection after Contusive Spinal Cord Injury in Mice.
    Qian J; Wu W; Xiong W; Chai Z; Xu XM; Jin X
    J Neurotrauma; 2019 Feb; 36(3):485-499. PubMed ID: 29848155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates.
    Jacobson PB; Goody R; Lawrence M; Mueller BK; Zhang X; Hooker BA; Pfleeger K; Ziemann A; Locke C; Barraud Q; Droescher M; Bernhard J; Popp A; Boeser P; Huang L; Mollon J; Mordashova Y; Cui YF; Savaryn JP; Grinnell C; Dreher I; Gold M; Courtine G; Mothe A; Tator CH; Guest JD
    Neurobiol Dis; 2021 Jul; 155():105385. PubMed ID: 33991647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion.
    Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF
    Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury.
    Rao JS; Zhao C; Zhang A; Duan H; Hao P; Wei RH; Shang J; Zhao W; Liu Z; Yu J; Fan KS; Tian Z; He Q; Song W; Yang Z; Sun YE; Li X
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5595-E5604. PubMed ID: 29844162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of myelination on axon sparing and locomotor function recovery in spinal cord injury assessed using diffusion tensor imaging.
    Tu TW; Kim JH; Yin FQ; Jakeman LB; Song SK
    NMR Biomed; 2013 Nov; 26(11):1484-95. PubMed ID: 23775778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed administration of recombinant human erythropoietin reduces apoptosis and inflammation and promotes myelin repair and functional recovery following spinal cord compressive injury in rats.
    Yang L; Yan X; Xu Z; Tan W; Chen Z; Wu B
    Restor Neurol Neurosci; 2015 Oct; 34(4):647-63. PubMed ID: 26444376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.