BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22140512)

  • 21. Functional Rescue of Cataract-Causing αA-G98R-Crystallin by Targeted Compensatory Suppressor Mutations in Human αA-Crystallin.
    Phadte AS; Mahalingam S; Santhoshkumar P; Sharma KK
    Biochemistry; 2019 Oct; 58(40):4148-4158. PubMed ID: 31523965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts.
    Cobb BA; Petrash JM
    Biochemistry; 2000 Dec; 39(51):15791-8. PubMed ID: 11123904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina.
    Mueller NH; Fogueri U; Pedler MG; Montana K; Petrash JM; Ammar DA
    PLoS One; 2015; 10(9):e0137659. PubMed ID: 26355842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of insolubilization by a single-point mutation in alphaA-crystallin linked with hereditary human cataracts.
    Andley UP; Hamilton PD; Ravi N
    Biochemistry; 2008 Sep; 47(36):9697-706. PubMed ID: 18700785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AlphaA-crystallin interacting regions in the small heat shock protein, alphaB-crystallin.
    Sreelakshmi Y; Santhoshkumar P; Bhattacharyya J; Sharma KK
    Biochemistry; 2004 Dec; 43(50):15785-95. PubMed ID: 15595834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature-dependent structural and functional properties of a mutant (F71L) αA-crystallin: molecular basis for early onset of age-related cataract.
    Validandi V; Reddy VS; Srinivas PN; Mueller NH; Bhagyalaxmi SG; Padma T; Petrash JM; Reddy GB
    FEBS Lett; 2011 Dec; 585(24):3884-9. PubMed ID: 22085609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of αA-crystallin.
    Ahsan SM; Bakthisaran R; Tangirala R; Rao CM
    Biochim Biophys Acta Gen Subj; 2021 May; 1865(5):129846. PubMed ID: 33444727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cataract-causing alphaAG98R mutant shows substrate-dependent chaperone activity.
    Murugesan R; Santhoshkumar P; Sharma KK
    Mol Vis; 2007 Dec; 13():2301-9. PubMed ID: 18199971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of small heat shock protein function in vivo: a knock-in mouse model demonstrates that the R49C mutation in alpha A-crystallin enhances protein insolubility and cell death.
    Xi JH; Bai F; Gross J; Townsend RR; Menko AS; Andley UP
    J Biol Chem; 2008 Feb; 283(9):5801-14. PubMed ID: 18056999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts.
    Nahomi RB; Wang B; Raghavan CT; Voss O; Doseff AI; Santhoshkumar P; Nagaraj RH
    J Biol Chem; 2013 May; 288(18):13022-35. PubMed ID: 23508955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transgenic mouse model for human autosomal dominant cataract.
    Hsu CD; Kymes S; Petrash JM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2036-44. PubMed ID: 16639013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of an N-terminal mutant of αA-crystallin αA-R21Q associated with congenital cataract.
    Phadte AS; Santhoshkumar P; Sharma KK
    Exp Eye Res; 2018 Sep; 174():185-195. PubMed ID: 29782825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin.
    Treweek TM; Rekas A; Walker MJ; Carver JA
    Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interaction between alphaA- and alphaB-crystallin is sequence-specific.
    Sreelakshmi Y; Sharma KK
    Mol Vis; 2006 May; 12():581-7. PubMed ID: 16760894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of αA-crystallin F71L mutant with wild type αA- and αB-crystallins by mammalian two hybrid assay.
    Ramkumar S; Thankappan B; Fujii N; Natarajaseenivasan K; Anbarasu K
    Int J Biol Macromol; 2015 May; 76():102-8. PubMed ID: 25720831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the conserved COOH-terminal triad in alphaA-crystallin aggregation and functionality.
    Li Y; Schmitz KR; Salerno JC; Koretz JF
    Mol Vis; 2007 Sep; 13():1758-68. PubMed ID: 17960114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin.
    Chaves JM; Srivastava K; Gupta R; Srivastava OP
    Biochemistry; 2008 Sep; 47(38):10069-83. PubMed ID: 18754677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of the unfolded protein response by a cataract-associated αA-crystallin mutation.
    Watson GW; Andley UP
    Biochem Biophys Res Commun; 2010 Oct; 401(2):192-6. PubMed ID: 20833134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone.
    Moreau KL; King JA
    PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AlphaA-crystallin R49Cneo mutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice.
    Andley UP
    BMC Ophthalmol; 2009 Jul; 9():4. PubMed ID: 19619312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.