BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 22140675)

  • 1. Ultrasensitive detection of phenolic compounds based on a spin-labeled luminescent lanthanide complex.
    Ji X; Hong J; Guo X
    Analyst; 2012 Feb; 137(3):710-5. PubMed ID: 22140675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A long-lived luminescence and EPR bimodal lanthanide-based probe for free radicals.
    Hong J; Zhuang Y; Ji X; Guo X
    Analyst; 2011 Jun; 136(12):2464-70. PubMed ID: 21556434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a terbium complex-based luminescent probe for imaging endogenous hydrogen peroxide generation in plant tissues.
    Ye Z; Chen J; Wang G; Yuan J
    Anal Chem; 2011 Jun; 83(11):4163-9. PubMed ID: 21548628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds.
    Liu X; Luo L; Ding Y; Xu Y
    Analyst; 2011 Feb; 136(4):696-701. PubMed ID: 21127796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow system for the automatic screening of the effect of phenolic compounds on the luminol-hydrogen peroxide-peroxidase chemiluminescence system.
    Araujo AR; Maya F; Saraiva ML; Lima JL; Estela JM; Cerdà V
    Luminescence; 2011; 26(6):571-8. PubMed ID: 21308949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared luminescence quenching method for the detection of phenolic compounds using N-acetyl-L-cysteine-protected gold nanoparticles-tyrosinase hybrid material.
    Dong W; Dong C; Shuang S; Choi MM
    Biosens Bioelectron; 2010 Jan; 25(5):1043-8. PubMed ID: 19833500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescent lanthanide complexes with analyte-triggered antenna formation.
    Pershagen E; Nordholm J; Borbas KE
    J Am Chem Soc; 2012 Jun; 134(24):9832-5. PubMed ID: 22339236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A luminescence-based probe for sensitive detection of hydrogen peroxide in seconds.
    Zscharnack K; Kreisig T; Prasse AA; Zuchner T
    Anal Chim Acta; 2014 Jun; 834():51-7. PubMed ID: 24928245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of ibuprofen in pharmaceutical formulations using time-resolved terbium-sensitized luminescence.
    Al-Kindy SM; Suliman FE
    Luminescence; 2007; 22(4):294-301. PubMed ID: 17373027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of L-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system.
    Chen H; Li R; Lin L; Guo G; Lin JM
    Talanta; 2010 Jun; 81(4-5):1688-96. PubMed ID: 20441959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel terbium chelate-based luminescent chemosensor for time-resolved luminescence detection of intracellular Zn2+ ions.
    Ye Z; Wang G; Chen J; Fu X; Zhang W; Yuan J
    Biosens Bioelectron; 2010 Nov; 26(3):1043-8. PubMed ID: 20846845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel detection of hydrogen peroxide based on a luminescent polyoxometalate.
    Wang B; Meng RQ; Bi LH; Wu LX
    Dalton Trans; 2011 May; 40(19):5298-301. PubMed ID: 21465048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New enzymatic method for the determination of total phenolic content in tea and wine.
    Stevanato R; Fabris S; Momo F
    J Agric Food Chem; 2004 Oct; 52(20):6287-93. PubMed ID: 15453702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical innovations in the detection of phenolics in wines.
    Russo P; Andreu-Navarro A; Aguilar-Caballos MP; Fernández-Romero JM; Gómez-Hens A
    J Agric Food Chem; 2008 Mar; 56(6):1858-65. PubMed ID: 18290616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kładna A
    Luminescence; 2005; 20(2):81-9. PubMed ID: 15803505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling reaction-based ultrasensitive detection of phenolic estrogens using surface-enhanced resonance Raman scattering.
    Han XX; Pienpinijtham P; Zhao B; Ozaki Y
    Anal Chem; 2011 Nov; 83(22):8582-8. PubMed ID: 21992518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanide-sensitized lanthanide luminescence: terbium-sensitized ytterbium luminescence in a trinuclear complex.
    Faulkner S; Pope SJ
    J Am Chem Soc; 2003 Sep; 125(35):10526-7. PubMed ID: 12940728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds.
    Lu L; Zhang L; Zhang X; Huan S; Shen G; Yu R
    Anal Chim Acta; 2010 Apr; 665(2):146-51. PubMed ID: 20417324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive luminescent determination of DNA using the terbium(III)-difloxacin complex.
    Yegorova AV; Scripinets YV; Duerkop A; Karasyov AA; Antonovich VP; Wolfbeis OS
    Anal Chim Acta; 2007 Feb; 584(2):260-7. PubMed ID: 17386613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.