BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22141396)

  • 1. Engineering botulinum neurotoxin domains for activation by toxin light chain.
    Stancombe PR; Masuyer G; Birch-Machin I; Beard M; Foster KA; Chaddock JA; Acharya KR
    FEBS J; 2012 Feb; 279(3):515-23. PubMed ID: 22141396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease activity of botulinum neurotoxin type E and its light chain: cleavage of actin.
    DasGupta BR; Tepp W
    Biochem Biophys Res Commun; 1993 Jan; 190(2):470-4. PubMed ID: 8427588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling.
    Kumar G; Kumaran D; Ahmed SA; Swaminathan S
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):511-20. PubMed ID: 22525749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of specifically activatable endopeptidase derivatives of Clostridium botulinum toxins type A, B, and C and their applications.
    Sutton JM; Wayne J; Scott-Tucker A; O'Brien SM; Marks PM; Alexander FC; Shone CC; Chaddock JA
    Protein Expr Purif; 2005 Mar; 40(1):31-41. PubMed ID: 15721769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structures and functional relationships in clostridial neurotoxins.
    Swaminathan S
    FEBS J; 2011 Dec; 278(23):4467-85. PubMed ID: 21592305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered botulinum neurotoxins as new therapeutics.
    Masuyer G; Chaddock JA; Foster KA; Acharya KR
    Annu Rev Pharmacol Toxicol; 2014; 54():27-51. PubMed ID: 24016211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structure and function of botulinum toxin].
    Fujii N
    Hokkaido Igaku Zasshi; 1995 Jan; 70(1):19-28. PubMed ID: 7744367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.
    Kumaran D; Adler M; Levit M; Krebs M; Sweeney R; Swaminathan S
    Bioorg Med Chem; 2015 Nov; 23(22):7264-73. PubMed ID: 26522088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins.
    Dasgupta BR; Antharavally BS; Tepp W; Evenson ML
    Protein J; 2005 Aug; 24(6):337-68. PubMed ID: 16323041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of engineered Clostridium botulinum neurotoxin derivatives.
    Masuyer G; Stancombe P; Chaddock JA; Acharya KR
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Dec; 67(Pt 12):1466-72. PubMed ID: 22139146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into clostridial neurotoxin-SNARE interactions.
    Breidenbach MA; Brunger AT
    Trends Mol Med; 2005 Aug; 11(8):377-81. PubMed ID: 16006188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate recognition strategy for botulinum neurotoxin serotype A.
    Breidenbach MA; Brunger AT
    Nature; 2004 Dec; 432(7019):925-9. PubMed ID: 15592454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A.
    Rigoni M; Caccin P; Johnson EA; Montecucco C; Rossetto O
    Biochem Biophys Res Commun; 2001 Nov; 288(5):1231-7. PubMed ID: 11700044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design.
    Agarwal R; Binz T; Swaminathan S
    Biochemistry; 2005 Sep; 44(35):11758-65. PubMed ID: 16128577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate.
    Fang H; Luo W; Henkel J; Barbieri J; Green N
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6958-63. PubMed ID: 16636286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the light chain subcellular localization an important factor in botulinum toxin duration of action?
    Fernández-Salas E; Ho H; Garay P; Steward LE; Aoki KR
    Mov Disord; 2004 Mar; 19 Suppl 8():S23-34. PubMed ID: 15027051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity.
    Arndt JW; Chai Q; Christian T; Stevens RC
    Biochemistry; 2006 Mar; 45(10):3255-62. PubMed ID: 16519520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators.
    Dolly JO; Wang J; Zurawski TH; Meng J
    FEBS J; 2011 Dec; 278(23):4454-66. PubMed ID: 21645262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered toxins: new therapeutics.
    Foster KA
    Toxicon; 2009 Oct; 54(5):587-92. PubMed ID: 19264086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability.
    Baldwin MR; Bradshaw M; Johnson EA; Barbieri JT
    Protein Expr Purif; 2004 Sep; 37(1):187-95. PubMed ID: 15294297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.