BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22141739)

  • 1. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore.
    Saha KK; Drndić M; Nikolić BK
    Nano Lett; 2012 Jan; 12(1):50-5. PubMed ID: 22141739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore.
    Heerema SJ; Vicarelli L; Pud S; Schouten RN; Zandbergen HW; Dekker C
    ACS Nano; 2018 Mar; 12(3):2623-2633. PubMed ID: 29474060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry at the edge of a single graphene layer in a nanopore.
    Banerjee S; Shim J; Rivera J; Jin X; Estrada D; Solovyeva V; You X; Pak J; Pop E; Aluru N; Bashir R
    ACS Nano; 2013 Jan; 7(1):834-43. PubMed ID: 23249127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards rapid DNA sequencing: detecting single-stranded DNA with a solid-state nanopore.
    Yan H; Xu B
    Small; 2006 Mar; 2(3):310-2. PubMed ID: 17193041
    [No Abstract]   [Full Text] [Related]  

  • 6. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes.
    Venkatesan BM; Estrada D; Banerjee S; Jin X; Dorgan VE; Bae MH; Aluru NR; Pop E; Bashir R
    ACS Nano; 2012 Jan; 6(1):441-50. PubMed ID: 22165962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule sensing electrode embedded in-plane nanopore.
    Tsutsui M; Rahong S; Iizumi Y; Okazaki T; Taniguchi M; Kawai T
    Sci Rep; 2011; 1():46. PubMed ID: 22355565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.
    Fuller CW; Kumar S; Porel M; Chien M; Bibillo A; Stranges PB; Dorwart M; Tao C; Li Z; Guo W; Shi S; Korenblum D; Trans A; Aguirre A; Liu E; Harada ET; Pollard J; Bhat A; Cech C; Yang A; Arnold C; Palla M; Hovis J; Chen R; Morozova I; Kalachikov S; Russo JJ; Kasianowicz JJ; Davis R; Roever S; Church GM; Ju J
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5233-8. PubMed ID: 27091962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in nanopore sequencing technology.
    Yang Y; Liu R; Xie H; Hui Y; Jiao R; Gong Y; Zhang Y
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4521-38. PubMed ID: 23901471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-D simulation of nanopore structure for DNA sequencing.
    Park JM; Pak YE; Chun H; Lee JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5160-3. PubMed ID: 22966538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL; Ahmed T; Zhu JX; Balatsky AV; Haraldsen JT
    J Phys Chem Lett; 2015 Jul; 6(13):2616-21. PubMed ID: 26266743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device.
    Kumawat RL; Pathak B
    Phys Chem Chem Phys; 2022 Jul; 24(26):15756-15766. PubMed ID: 35757959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks.
    Johnson JL; Behnam A; Pearton SJ; Ural A
    Adv Mater; 2010 Nov; 22(43):4877-80. PubMed ID: 20803539
    [No Abstract]   [Full Text] [Related]  

  • 15. Recent progress in atomistic simulation of electrical current DNA sequencing.
    Kim HS; Kim YH
    Biosens Bioelectron; 2015 Jul; 69():186-98. PubMed ID: 25744599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast DNA sequencing with a graphene-based nanochannel device.
    Min SK; Kim WY; Cho Y; Kim KS
    Nat Nanotechnol; 2011 Mar; 6(3):162-5. PubMed ID: 21297626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling.
    Wasfi A; Awwad F; Ayesh AI
    IEEE Trans Nanobioscience; 2022 Jul; 21(3):347-357. PubMed ID: 33945483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of base-pair mismatches in DNA using graphene-based nanopore device.
    Kundu S; Karmakar SN
    Nanotechnology; 2016 Apr; 27(13):135101. PubMed ID: 26894508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A device for performing lateral conductance measurements on individual double-stranded DNA molecules.
    Menard LD; Mair CE; Woodson ME; Alarie JP; Ramsey JM
    ACS Nano; 2012 Oct; 6(10):9087-94. PubMed ID: 22950784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore integrated nanogaps for DNA detection.
    Fanget A; Traversi F; Khlybov S; Granjon P; Magrez A; Forró L; Radenovic A
    Nano Lett; 2014 Jan; 14(1):244-9. PubMed ID: 24308689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.